Spaces:
Sleeping
Sleeping
import torch | |
import random | |
import torch.nn as nn | |
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
from transformers import AutoTokenizer, AutoModel, AutoConfig | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
DESCRIPTION = "GTE Architecture" | |
ROUTE = "/text" | |
class AutoBertClassifier(nn.Module): | |
def __init__(self, num_labels=8, model_path="haisongzhang/roberta-tiny-cased"): | |
super().__init__() | |
self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
self.bert = AutoModel.from_pretrained(model_path) | |
self.config = AutoConfig.from_pretrained(model_path) | |
self.config.num_labels = num_labels | |
self.dropout = nn.Dropout(0.05) | |
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels) | |
def forward(self, input_ids, attention_mask): | |
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) | |
pooled_output = outputs.last_hidden_state[:, 0] # Using [CLS] token representation | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
return logits | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model_repo = "elucidator8918/frugal-ai-text-tiny-final" | |
model = AutoBertClassifier(num_labels=8) | |
model.load_state_dict(load_file(hf_hub_download(repo_id=model_repo, filename="model.safetensors"))) | |
tokenizer = AutoTokenizer.from_pretrained(model_repo) | |
model = model.to(device) | |
model.eval() | |
router = APIRouter() | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: GTE Architecture | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
true_labels = test_dataset["label"] | |
texts = test_dataset["quote"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
text_encoding = tokenizer( | |
texts, | |
truncation=True, | |
padding=True, | |
return_tensors="pt", | |
max_length=256 | |
) | |
with torch.no_grad(): | |
text_input_ids = text_encoding["input_ids"].to(device) | |
text_attention_mask = text_encoding["attention_mask"].to(device) | |
logits = model(text_input_ids, text_attention_mask) | |
predictions = torch.argmax(logits, dim=1).cpu().numpy() | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
print(f"Accuracy = {accuracy}") | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
print(results) | |
return results |