elucidator8918's picture
Update tasks/text.py
a55f0ac verified
import torch
import random
import torch.nn as nn
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
from transformers import AutoTokenizer, AutoModel, AutoConfig
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
DESCRIPTION = "GTE Architecture"
ROUTE = "/text"
class AutoBertClassifier(nn.Module):
def __init__(self, num_labels=8, model_path="haisongzhang/roberta-tiny-cased"):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.bert = AutoModel.from_pretrained(model_path)
self.config = AutoConfig.from_pretrained(model_path)
self.config.num_labels = num_labels
self.dropout = nn.Dropout(0.05)
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = outputs.last_hidden_state[:, 0] # Using [CLS] token representation
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_repo = "elucidator8918/frugal-ai-text-tiny-final"
model = AutoBertClassifier(num_labels=8)
model.load_state_dict(load_file(hf_hub_download(repo_id=model_repo, filename="model.safetensors")))
tokenizer = AutoTokenizer.from_pretrained(model_repo)
model = model.to(device)
model.eval()
router = APIRouter()
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: GTE Architecture
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
true_labels = test_dataset["label"]
texts = test_dataset["quote"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
text_encoding = tokenizer(
texts,
truncation=True,
padding=True,
return_tensors="pt",
max_length=256
)
with torch.no_grad():
text_input_ids = text_encoding["input_ids"].to(device)
text_attention_mask = text_encoding["attention_mask"].to(device)
logits = model(text_input_ids, text_attention_mask)
predictions = torch.argmax(logits, dim=1).cpu().numpy()
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
print(f"Accuracy = {accuracy}")
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
print(results)
return results