Spaces:
Sleeping
Sleeping
File size: 4,916 Bytes
13fd1be ced1c26 4d6e8c2 13fd1be 4d6e8c2 352251d 1c33274 70f5f26 13fd1be a55f0ac 13fd1be c7e99c2 20d94c0 c7e99c2 1c33274 70f5f26 4d6e8c2 70f5f26 352251d 4d6e8c2 352251d 13fd1be 4d6e8c2 70f5f26 4d6e8c2 352251d f94cae2 352251d 950ba1c f94cae2 70f5f26 4d6e8c2 f94cae2 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 f94cae2 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import torch
import random
import torch.nn as nn
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
from transformers import AutoTokenizer, AutoModel, AutoConfig
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
DESCRIPTION = "GTE Architecture"
ROUTE = "/text"
class AutoBertClassifier(nn.Module):
def __init__(self, num_labels=8, model_path="haisongzhang/roberta-tiny-cased"):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.bert = AutoModel.from_pretrained(model_path)
self.config = AutoConfig.from_pretrained(model_path)
self.config.num_labels = num_labels
self.dropout = nn.Dropout(0.05)
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = outputs.last_hidden_state[:, 0] # Using [CLS] token representation
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_repo = "elucidator8918/frugal-ai-text-tiny-final"
model = AutoBertClassifier(num_labels=8)
model.load_state_dict(load_file(hf_hub_download(repo_id=model_repo, filename="model.safetensors")))
tokenizer = AutoTokenizer.from_pretrained(model_repo)
model = model.to(device)
model.eval()
router = APIRouter()
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: GTE Architecture
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
true_labels = test_dataset["label"]
texts = test_dataset["quote"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
text_encoding = tokenizer(
texts,
truncation=True,
padding=True,
return_tensors="pt",
max_length=256
)
with torch.no_grad():
text_input_ids = text_encoding["input_ids"].to(device)
text_attention_mask = text_encoding["attention_mask"].to(device)
logits = model(text_input_ids, text_attention_mask)
predictions = torch.argmax(logits, dim=1).cpu().numpy()
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
print(f"Accuracy = {accuracy}")
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
print(results)
return results |