File size: 4,916 Bytes
13fd1be
 
ced1c26
4d6e8c2
 
 
 
13fd1be
 
 
4d6e8c2
 
 
 
352251d
1c33274
70f5f26
13fd1be
a55f0ac
13fd1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7e99c2
 
20d94c0
c7e99c2
 
 
 
 
 
 
 
 
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
352251d
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352251d
 
 
13fd1be
4d6e8c2
 
 
70f5f26
 
 
 
 
4d6e8c2
352251d
 
 
 
 
f94cae2
352251d
 
 
 
 
950ba1c
 
f94cae2
70f5f26
 
 
 
4d6e8c2
 
 
 
 
f94cae2
 
4d6e8c2
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
f94cae2
 
4d6e8c2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import random
import torch.nn as nn
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
from transformers import AutoTokenizer, AutoModel, AutoConfig
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

DESCRIPTION = "GTE Architecture"
ROUTE = "/text"

class AutoBertClassifier(nn.Module):
    def __init__(self, num_labels=8, model_path="haisongzhang/roberta-tiny-cased"):
        super().__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        self.bert = AutoModel.from_pretrained(model_path)
        self.config = AutoConfig.from_pretrained(model_path)
        self.config.num_labels = num_labels
        self.dropout = nn.Dropout(0.05)
        self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)

    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = outputs.last_hidden_state[:, 0]  # Using [CLS] token representation
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        return logits

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    
model_repo = "elucidator8918/frugal-ai-text-tiny-final"
model = AutoBertClassifier(num_labels=8)
model.load_state_dict(load_file(hf_hub_download(repo_id=model_repo, filename="model.safetensors")))
tokenizer = AutoTokenizer.from_pretrained(model_repo)

model = model.to(device)
model.eval()

router = APIRouter()

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: GTE Architecture
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]

    true_labels = test_dataset["label"]
    texts = test_dataset["quote"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    text_encoding = tokenizer(
        texts,
        truncation=True,
        padding=True,
        return_tensors="pt",
        max_length=256
    )

    with torch.no_grad():
        text_input_ids = text_encoding["input_ids"].to(device)
        text_attention_mask = text_encoding["attention_mask"].to(device)
        logits = model(text_input_ids, text_attention_mask)
        predictions = torch.argmax(logits, dim=1).cpu().numpy()
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)

    print(f"Accuracy = {accuracy}")
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }

    print(results)
    
    return results