Spaces:
Running
Running
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import xgboost | |
import random | |
import os | |
from .utils.evaluation import AudioEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
from .utils.preprocess import resample_audio, create_mel_spectrogram | |
from dotenv import load_dotenv | |
load_dotenv() | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/audio" | |
async def evaluate_audio(request: AudioEvaluationRequest): | |
""" | |
Evaluate audio classification for rainforest sound detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-1) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
print("start audio") | |
username, space_url = get_space_info() | |
print(username) | |
print(space_url) | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"chainsaw": 0, | |
"environment": 1 | |
} | |
# Load and prepare the dataset | |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate | |
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) | |
# Split dataset | |
train = dataset["train"] | |
test = dataset["test"] | |
#preprocess data: resample data to be on the same sampling rate | |
target_sr = 12000 | |
test_df = pd.DataFrame(test) | |
test_df["array"] = test_df["audio"].apply(lambda x: x['array']) | |
test_df["sampling_rate"] = test_df["audio"].apply(lambda x: x['sampling_rate']) | |
test_df["resampled_array"] = test_df.apply( | |
lambda row: resample_audio(row["array"], row["sampling_rate"], target_sr=target_sr), axis=1 | |
) | |
test_df["sampling_rate"] = target_sr | |
features = [] | |
for idx, row in test_df.iterrows(): | |
features.append(create_mel_spectrogram(row['resampled_array'], row['sampling_rate'])) | |
# Convert features to a numpy array and add to the DataFrame | |
test_df['basic_melspect'] = features | |
# Filter on samples with the same mel spectogram shape | |
test_df["shape"] = test_df['basic_melspect'].apply(lambda x: x.shape[1]) | |
test_df = test_df[test_df["shape"]==71] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
# Make random predictions (placeholder for actual model inference) | |
with open("./train_models/xgboost_audio_model.pkl", "rb") as f: | |
loaded_model = pickle.load(f) | |
# Flatten Mel Spectrograms into 1D Features | |
test_df["flattened_mel"] = test_df["basic_melspect"].apply(lambda x: x.flatten()) | |
# Convert to NumPy arrays | |
X = np.stack(test_df["flattened_mel"].values) # Features | |
y = test_df["label"].values # Labels (0: chainsaw, 1: rainforest) | |
dtest = xgboost.DMatrix(X, label=y) | |
# Make Predictions | |
y_pred_probs = loaded_model.predict(dtest) | |
y_pred = (y_pred_probs > 0.5).astype(int) # Convert probabilities to binary labels | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(y, y_pred) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |