File size: 4,604 Bytes
4d6e8c2
fe4a4cb
 
 
6dacae5
 
 
 
 
fe4a4cb
3b09640
fe4a4cb
4d6e8c2
fe4a4cb
6dacae5
4d6e8c2
3b09640
 
 
4d6e8c2
 
70f5f26
1c33274
70f5f26
fe4a4cb
3b09640
1c33274
70f5f26
4d6e8c2
 
fe4a4cb
70f5f26
 
fe4a4cb
70f5f26
4d6e8c2
fe4a4cb
ee725de
4d6e8c2
ee725de
 
 
fe4a4cb
 
 
 
 
 
3b09640
 
 
fe4a4cb
6dacae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe4a4cb
 
 
 
 
 
 
 
 
 
 
6dacae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe4a4cb
 
 
 
 
 
 
 
6dacae5
fe4a4cb
 
 
4d6e8c2
 
fe4a4cb
70f5f26
fe4a4cb
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
fe4a4cb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import pandas as pd
import numpy as np
import pickle
import xgboost

import random
import os

from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from .utils.preprocess import resample_audio, create_mel_spectrogram

from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/audio"



@router.post(ROUTE, tags=["Audio Task"],
             description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
    """
    Evaluate audio classification for rainforest sound detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-1)
    - Used as a baseline for comparison
    """
    # Get space info
    print("start audio")
    username, space_url = get_space_info()
    print(username)
    print(space_url)
    
    # Define the label mapping
    LABEL_MAPPING = {
        "chainsaw": 0,
        "environment": 1
    }
    # Load and prepare the dataset
    # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
    dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
    
    # Split dataset
    train = dataset["train"]
    test = dataset["test"]

    #preprocess data: resample data to be on the same sampling rate
    target_sr = 12000
    test_df = pd.DataFrame(test)
    test_df["array"] = test_df["audio"].apply(lambda x: x['array'])
    test_df["sampling_rate"] = test_df["audio"].apply(lambda x: x['sampling_rate'])   
    test_df["resampled_array"] = test_df.apply(
        lambda row: resample_audio(row["array"], row["sampling_rate"], target_sr=target_sr), axis=1
    )
    test_df["sampling_rate"] = target_sr

    features = []
    for idx, row in test_df.iterrows():
        features.append(create_mel_spectrogram(row['resampled_array'], row['sampling_rate']))

    # Convert features to a numpy array and add to the DataFrame
    test_df['basic_melspect'] = features

    # Filter on samples with the same mel spectogram shape
    test_df["shape"] = test_df['basic_melspect'].apply(lambda x: x.shape[1])
    test_df = test_df[test_df["shape"]==71]

    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    # Make random predictions (placeholder for actual model inference)
    with open("./train_models/xgboost_audio_model.pkl", "rb") as f:
        loaded_model = pickle.load(f)

    # Flatten Mel Spectrograms into 1D Features
    test_df["flattened_mel"] = test_df["basic_melspect"].apply(lambda x: x.flatten())

    # Convert to NumPy arrays
    X = np.stack(test_df["flattened_mel"].values)  # Features
    y = test_df["label"].values  # Labels (0: chainsaw, 1: rainforest)

    dtest = xgboost.DMatrix(X, label=y)
    # Make Predictions
    y_pred_probs = loaded_model.predict(dtest)
    y_pred = (y_pred_probs > 0.5).astype(int)  # Convert probabilities to binary labels

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(y, y_pred)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results