Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,121 Bytes
32104a7 2adceb1 dc6b3d4 90d3504 1f2a2c3 90d3504 6a2dd2b 1f2a2c3 9aefa45 1f2a2c3 9aefa45 1f2a2c3 2adceb1 dc6b3d4 9aefa45 dc6b3d4 90d3504 dc6b3d4 1f2a2c3 3d2a5fe 9aefa45 86938ce 9aefa45 1f2a2c3 f998db7 1f2a2c3 9aefa45 1f2a2c3 9aefa45 1f2a2c3 9aefa45 f54b643 9aefa45 1f2a2c3 9aefa45 1f2a2c3 9aefa45 1f2a2c3 9aefa45 1f2a2c3 9aefa45 dc6b3d4 1f2a2c3 dc6b3d4 9aefa45 dc6b3d4 9aefa45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import traceback
import logging
from typing import Optional
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io
import re
import base64, os
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
from util.som import MarkHelper, plot_boxes_with_marks, plot_circles_with_marks
from util.process_utils import pred_2_point, extract_bbox, extract_mark_id
import torch
from PIL import Image
from huggingface_hub import snapshot_download
import torch
from transformers import AutoModelForCausalLM
from transformers import AutoProcessor
logger = logging.getLogger()
logger.setLevel(logging.WARNING)
if not logger.handlers:
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(name)s: %(message)s"))
logger.addHandler(handler)
# Define repository and local directory
repo_id = "microsoft/OmniParser-v2.0" # HF repo
local_dir = "weights" # Target local directory
dtype = torch.bfloat16
DEVICE = torch.device('cuda')
som_generator = MarkHelper()
magma_som_prompt = "<image>\nIn this view I need to click a button to \"{}\"? Provide the coordinates and the mark index of the containing bounding box if applicable."
magma_qa_prompt = "<image>\n{} Answer the question briefly."
magma_model_id = "microsoft/Magma-8B"
magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True, torch_dtype=dtype)
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
magam_model.to(DEVICE)
# Download the entire repository
snapshot_download(repo_id=repo_id, local_dir=local_dir)
logger.warning(f"Repository downloaded to: {local_dir}")
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption")
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
MARKDOWN = """
<div align="center">
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>
\[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] \[[Project Page](https://microsoft.github.io/Magma/)\] \[[Github Repo](https://github.com/microsoft/Magma)\] \[[Hugging Face Model](https://huggingface.co/microsoft/Magma-8B)\]
This demo is powered by [Gradio](https://gradio.app/) and uses [OmniParserv2](https://github.com/microsoft/OmniParser) to generate [Set-of-Mark prompts](https://github.com/microsoft/SoM).
The demo supports three modes:
1. Empty text inut: it downgrades to an OmniParser demo.
2. Text input starting with "Q:": it leads to a visual question answering demo.
3. Text input for UI navigation: it leads to a UI navigation demo.
</div>
"""
DEVICE = torch.device('cuda')
@spaces.GPU
@torch.inference_mode()
def get_som_response(instruction, image_som):
prompt = magma_som_prompt.format(instruction)
if magam_model.config.mm_use_image_start_end:
qs = prompt.replace('<image>', '<image_start><image><image_end>')
else:
qs = prompt
convs = [{"role": "user", "content": qs}]
convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs
prompt = magma_processor.tokenizer.apply_chat_template(
convs,
tokenize=False,
add_generation_prompt=True
)
inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
inputs = inputs.to(dtype).to(DEVICE)
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
with torch.inference_mode():
output_ids = magam_model.generate(
**inputs,
temperature=0.0,
do_sample=False,
num_beams=1,
max_new_tokens=128,
use_cache=True
)
prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
response = response.replace(prompt_decoded, '').strip()
return response
@spaces.GPU
@torch.inference_mode()
def get_qa_response(instruction, image):
prompt = magma_qa_prompt.format(instruction)
if magam_model.config.mm_use_image_start_end:
qs = prompt.replace('<image>', '<image_start><image><image_end>')
else:
qs = prompt
convs = [{"role": "user", "content": qs}]
convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs
prompt = magma_processor.tokenizer.apply_chat_template(
convs,
tokenize=False,
add_generation_prompt=True
)
inputs = magma_processor(images=[image], texts=prompt, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
inputs = inputs.to(dtype).to(DEVICE)
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
with torch.inference_mode():
output_ids = magam_model.generate(
**inputs,
temperature=0.0,
do_sample=False,
num_beams=1,
max_new_tokens=128,
use_cache=True
)
prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
response = response.replace(prompt_decoded, '').strip()
return response
@spaces.GPU
@torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
image_input,
box_threshold,
iou_threshold,
use_paddleocr,
imgsz,
instruction,
) -> Optional[Image.Image]:
# image_save_path = 'imgs/saved_image_demo.png'
# image_input.save(image_save_path)
# image = Image.open(image_save_path)
box_overlay_ratio = image_input.size[0] / 3200
draw_bbox_config = {
'text_scale': 0.8 * box_overlay_ratio,
'text_thickness': max(int(2 * box_overlay_ratio), 1),
'text_padding': max(int(3 * box_overlay_ratio), 1),
'thickness': max(int(3 * box_overlay_ratio), 1),
}
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
text, ocr_bbox = ocr_bbox_rslt
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,)
parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
if len(instruction) == 0:
logger.warning('finish processing')
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
return image, str(parsed_content_list)
elif instruction.startswith('Q:'):
response = get_qa_response(instruction, image_input)
return image_input, response
# parsed_content_list = str(parsed_content_list)
# convert xywh to yxhw
label_coordinates_yxhw = {}
for key, val in label_coordinates.items():
if val[2] < 0 or val[3] < 0:
continue
label_coordinates_yxhw[key] = [val[1], val[0], val[3], val[2]]
image_som = plot_boxes_with_marks(image_input.copy(), [val for key, val in label_coordinates_yxhw.items()], som_generator, edgecolor=(255,0,0), fn_save=None, normalized_to_pixel=False)
# convert xywh to xyxy
for key, val in label_coordinates.items():
label_coordinates[key] = [val[0], val[1], val[0] + val[2], val[1] + val[3]]
# normalize label_coordinates
for key, val in label_coordinates.items():
label_coordinates[key] = [val[0] / image_input.size[0], val[1] / image_input.size[1], val[2] / image_input.size[0], val[3] / image_input.size[1]]
magma_response = get_som_response(instruction, image_som)
logger.warning("magma repsonse: %s", magma_response)
# map magma_response into the mark id
mark_id = extract_mark_id(magma_response)
if mark_id is not None:
if str(mark_id) in label_coordinates:
bbox_for_mark = label_coordinates[str(mark_id)]
else:
bbox_for_mark = None
else:
bbox_for_mark = None
if bbox_for_mark:
# draw bbox_for_mark on the image
image_som = plot_boxes_with_marks(
image_input,
[label_coordinates_yxhw[str(mark_id)]],
som_generator,
edgecolor=(255,127,111),
alpha=30,
fn_save=None,
normalized_to_pixel=False,
add_mark=False
)
else:
try:
if 'box' in magma_response:
pred_bbox = extract_bbox(magma_response)
click_point = [(pred_bbox[0][0] + pred_bbox[1][0]) / 2, (pred_bbox[0][1] + pred_bbox[1][1]) / 2]
click_point = [item / 1000 for item in click_point]
else:
click_point = pred_2_point(magma_response)
# de-normalize click_point (width, height)
click_point = [click_point[0] * image_input.size[0], click_point[1] * image_input.size[1]]
image_som = plot_circles_with_marks(
image_input,
[click_point],
som_generator,
edgecolor=(255,127,111),
linewidth=3,
fn_save=None,
normalized_to_pixel=False,
add_mark=False
)
except:
image_som = image_input
return image_som, str(parsed_content_list)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
with gr.Accordion("Parameters", open=False) as parameter_row:
box_threshold_component = gr.Slider(
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
iou_threshold_component = gr.Slider(
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
use_paddleocr_component = gr.Checkbox(
label='Use PaddleOCR', value=True)
imgsz_component = gr.Slider(
label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640)
# text box
text_input_component = gr.Textbox(label='Text Input', placeholder='Text Input')
submit_button_component = gr.Button(
value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image Output')
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
submit_button_component.click(
fn=process,
inputs=[
image_input_component,
box_threshold_component,
iou_threshold_component,
use_paddleocr_component,
imgsz_component,
text_input_component
],
outputs=[image_output_component, text_output_component]
)
# demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.queue().launch(share=False) |