Spaces:
Running
on
Zero
Running
on
Zero
update all
Browse files- app.py +282 -52
- requirements.txt +15 -1
- util/__init__.py +0 -0
- util/arial.ttf +0 -0
- util/box_annotator.py +262 -0
- util/omniparser.py +32 -0
- util/process_utils.py +48 -0
- util/som.py +348 -0
- util/utils.py +542 -0
app.py
CHANGED
@@ -1,64 +1,294 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
import spaces
|
3 |
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
import re
|
9 |
|
10 |
+
import base64, os
|
11 |
+
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
|
12 |
+
from util.som import MarkHelper, plot_boxes_with_marks, plot_circles_with_marks
|
13 |
+
from util.process_utils import pred_2_point, extract_bbox, extract_mark_id
|
14 |
|
15 |
+
import torch
|
16 |
+
from PIL import Image
|
17 |
|
18 |
+
from huggingface_hub import snapshot_download
|
19 |
+
import torch
|
20 |
+
from transformers import AutoModelForCausalLM
|
21 |
+
from transformers import AutoProcessor
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Define repository and local directory
|
24 |
+
repo_id = "microsoft/OmniParser-v2.0" # HF repo
|
25 |
+
local_dir = "weights" # Target local directory
|
|
|
|
|
26 |
|
27 |
+
som_generator = MarkHelper()
|
28 |
+
magma_som_prompt = "<image>\nIn this view I need to click a button to \"{}\"? Provide the coordinates and the mark index of the containing bounding box if applicable."
|
29 |
+
magma_qa_prompt = "<image>\n{} Answer the question briefly."
|
30 |
+
magma_model_id = "microsoft/Magma-8B"
|
31 |
+
magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True)
|
32 |
+
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
|
33 |
+
magam_model.to("cuda")
|
34 |
|
35 |
+
# Download the entire repository
|
36 |
+
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
37 |
|
38 |
+
print(f"Repository downloaded to: {local_dir}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
40 |
|
41 |
+
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
|
42 |
+
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption")
|
43 |
+
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
|
44 |
|
45 |
+
MARKDOWN = """
|
46 |
+
<div align="center">
|
47 |
+
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>
|
48 |
+
|
49 |
+
[Jianwei Yang](https://jwyang.github.io/)<sup>*</sup><sup>1</sup><sup>†</sup>
|
50 |
+
[Reuben Tan](https://cs-people.bu.edu/rxtan/)<sup>1</sup><sup>†</sup>
|
51 |
+
[Qianhui Wu](https://qianhuiwu.github.io/)<sup>1</sup><sup>†</sup>
|
52 |
+
[Ruijie Zheng](https://ruijiezheng.com/)<sup>2</sup><sup>‡</sup>
|
53 |
+
[Baolin Peng](https://scholar.google.com/citations?user=u1CNjgwAAAAJ&hl=en&oi=ao)<sup>1</sup><sup>‡</sup>
|
54 |
+
[Yongyuan Liang](https://cheryyunl.github.io)<sup>2</sup><sup>‡</sup>
|
55 |
+
[Yu Gu](https://users.umiacs.umd.edu/~hal/)<sup>1</sup>
|
56 |
+
[Mu Cai](https://pages.cs.wisc.edu/~mucai/)<sup>3</sup>
|
57 |
+
[Seonghyeon Ye](https://seonghyeonye.github.io/)<sup>4</sup>
|
58 |
+
[Joel Jang](https://joeljang.github.io/)<sup>5</sup>
|
59 |
+
[Yuquan Deng](https://scholar.google.com/citations?user=LTC0Q6YAAAAJ&hl=en)<sup>5</sup>
|
60 |
+
[Lars Liden](https://sites.google.com/site/larsliden)<sup>1</sup>
|
61 |
+
[Jianfeng Gao](https://www.microsoft.com/en-us/research/people/jfgao/)<sup>1</sup><sup>▽</sup>
|
62 |
+
|
63 |
+
<sup>1</sup> Microsoft Research; <sup>2</sup> University of Maryland; <sup>3</sup> University of Wisconsin-Madison; <sup>4</sup> KAIST; <sup>5</sup> University of Washington
|
64 |
+
|
65 |
+
<sup>*</sup> Project lead <sup>†</sup> First authors <sup>‡</sup> Second authors <sup>▽</sup> Leadership
|
66 |
+
|
67 |
+
\[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] \[[Project Page](https://microsoft.github.io/Magma/)\] \[[Github Repo](https://github.com/microsoft/Magma)\] \[[Hugging Face Model](https://huggingface.co/microsoft/Magma-8B)\]
|
68 |
+
|
69 |
+
This demo is powered by [Gradio](https://gradio.app/) and uses OmniParserv2 to generate Set-of-Mark prompts.
|
70 |
+
</div>
|
71 |
"""
|
72 |
+
|
73 |
+
DEVICE = torch.device('cuda')
|
74 |
+
|
75 |
+
@spaces.GPU
|
76 |
+
@torch.inference_mode()
|
77 |
+
def get_som_response(instruction, image_som):
|
78 |
+
prompt = magma_som_prompt.format(instruction)
|
79 |
+
if magam_model.config.mm_use_image_start_end:
|
80 |
+
qs = prompt.replace('<image>', '<image_start><image><image_end>')
|
81 |
+
else:
|
82 |
+
qs = prompt
|
83 |
+
convs = [{"role": "user", "content": qs}]
|
84 |
+
convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs
|
85 |
+
prompt = magma_processor.tokenizer.apply_chat_template(
|
86 |
+
convs,
|
87 |
+
tokenize=False,
|
88 |
+
add_generation_prompt=True
|
89 |
+
)
|
90 |
+
|
91 |
+
inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt")
|
92 |
+
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
|
93 |
+
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
94 |
+
inputs = inputs.to("cuda")
|
95 |
+
|
96 |
+
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
97 |
+
with torch.inference_mode():
|
98 |
+
output_ids = magam_model.generate(
|
99 |
+
**inputs,
|
100 |
+
temperature=0.0,
|
101 |
+
do_sample=False,
|
102 |
+
num_beams=1,
|
103 |
+
max_new_tokens=128,
|
104 |
+
use_cache=True
|
105 |
+
)
|
106 |
+
|
107 |
+
prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
|
108 |
+
response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
109 |
+
response = response.replace(prompt_decoded, '').strip()
|
110 |
+
return response
|
111 |
+
|
112 |
+
@spaces.GPU
|
113 |
+
@torch.inference_mode()
|
114 |
+
def get_qa_response(instruction, image):
|
115 |
+
prompt = magma_qa_prompt.format(instruction)
|
116 |
+
if magam_model.config.mm_use_image_start_end:
|
117 |
+
qs = prompt.replace('<image>', '<image_start><image><image_end>')
|
118 |
+
else:
|
119 |
+
qs = prompt
|
120 |
+
convs = [{"role": "user", "content": qs}]
|
121 |
+
convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs
|
122 |
+
prompt = magma_processor.tokenizer.apply_chat_template(
|
123 |
+
convs,
|
124 |
+
tokenize=False,
|
125 |
+
add_generation_prompt=True
|
126 |
+
)
|
127 |
+
|
128 |
+
inputs = magma_processor(images=[image], texts=prompt, return_tensors="pt")
|
129 |
+
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
|
130 |
+
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
131 |
+
inputs = inputs.to("cuda")
|
132 |
+
|
133 |
+
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
134 |
+
with torch.inference_mode():
|
135 |
+
output_ids = magam_model.generate(
|
136 |
+
**inputs,
|
137 |
+
temperature=0.0,
|
138 |
+
do_sample=False,
|
139 |
+
num_beams=1,
|
140 |
+
max_new_tokens=128,
|
141 |
+
use_cache=True
|
142 |
+
)
|
143 |
+
|
144 |
+
prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
|
145 |
+
response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
146 |
+
response = response.replace(prompt_decoded, '').strip()
|
147 |
+
return response
|
148 |
+
|
149 |
+
@spaces.GPU
|
150 |
+
@torch.inference_mode()
|
151 |
+
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
152 |
+
def process(
|
153 |
+
image_input,
|
154 |
+
box_threshold,
|
155 |
+
iou_threshold,
|
156 |
+
use_paddleocr,
|
157 |
+
imgsz,
|
158 |
+
instruction,
|
159 |
+
) -> Optional[Image.Image]:
|
160 |
+
|
161 |
+
# image_save_path = 'imgs/saved_image_demo.png'
|
162 |
+
# image_input.save(image_save_path)
|
163 |
+
# image = Image.open(image_save_path)
|
164 |
+
box_overlay_ratio = image_input.size[0] / 3200
|
165 |
+
draw_bbox_config = {
|
166 |
+
'text_scale': 0.8 * box_overlay_ratio,
|
167 |
+
'text_thickness': max(int(2 * box_overlay_ratio), 1),
|
168 |
+
'text_padding': max(int(3 * box_overlay_ratio), 1),
|
169 |
+
'thickness': max(int(3 * box_overlay_ratio), 1),
|
170 |
+
}
|
171 |
+
|
172 |
+
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
|
173 |
+
text, ocr_bbox = ocr_bbox_rslt
|
174 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,)
|
175 |
+
parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
|
176 |
+
|
177 |
+
if len(instruction) == 0:
|
178 |
+
print('finish processing')
|
179 |
+
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
180 |
+
return image, str(parsed_content_list)
|
181 |
+
|
182 |
+
elif instruction.startswith('Q:'):
|
183 |
+
response = get_qa_response(instruction, image_input)
|
184 |
+
return image_input, response
|
185 |
+
|
186 |
+
# parsed_content_list = str(parsed_content_list)
|
187 |
+
# convert xywh to yxhw
|
188 |
+
label_coordinates_yxhw = {}
|
189 |
+
for key, val in label_coordinates.items():
|
190 |
+
if val[2] < 0 or val[3] < 0:
|
191 |
+
continue
|
192 |
+
label_coordinates_yxhw[key] = [val[1], val[0], val[3], val[2]]
|
193 |
+
image_som = plot_boxes_with_marks(image_input.copy(), [val for key, val in label_coordinates_yxhw.items()], som_generator, edgecolor=(255,0,0), fn_save=None, normalized_to_pixel=False)
|
194 |
+
|
195 |
+
# convert xywh to xyxy
|
196 |
+
for key, val in label_coordinates.items():
|
197 |
+
label_coordinates[key] = [val[0], val[1], val[0] + val[2], val[1] + val[3]]
|
198 |
+
|
199 |
+
# normalize label_coordinates
|
200 |
+
for key, val in label_coordinates.items():
|
201 |
+
label_coordinates[key] = [val[0] / image_input.size[0], val[1] / image_input.size[1], val[2] / image_input.size[0], val[3] / image_input.size[1]]
|
202 |
+
|
203 |
+
magma_response = get_som_response(instruction, image_som)
|
204 |
+
print("magma repsonse: ", magma_response)
|
205 |
+
|
206 |
+
# map magma_response into the mark id
|
207 |
+
mark_id = extract_mark_id(magma_response)
|
208 |
+
if mark_id is not None:
|
209 |
+
if str(mark_id) in label_coordinates:
|
210 |
+
bbox_for_mark = label_coordinates[str(mark_id)]
|
211 |
+
else:
|
212 |
+
bbox_for_mark = None
|
213 |
+
else:
|
214 |
+
bbox_for_mark = None
|
215 |
+
|
216 |
+
if bbox_for_mark:
|
217 |
+
# draw bbox_for_mark on the image
|
218 |
+
image_som = plot_boxes_with_marks(
|
219 |
+
image_input,
|
220 |
+
[label_coordinates_yxhw[str(mark_id)]],
|
221 |
+
som_generator,
|
222 |
+
edgecolor=(255,127,111),
|
223 |
+
alpha=30,
|
224 |
+
fn_save=None,
|
225 |
+
normalized_to_pixel=False,
|
226 |
+
add_mark=False
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
try:
|
230 |
+
if 'box' in magma_response:
|
231 |
+
pred_bbox = extract_bbox(magma_response)
|
232 |
+
click_point = [(pred_bbox[0][0] + pred_bbox[1][0]) / 2, (pred_bbox[0][1] + pred_bbox[1][1]) / 2]
|
233 |
+
click_point = [item / 1000 for item in click_point]
|
234 |
+
else:
|
235 |
+
click_point = pred_2_point(magma_response)
|
236 |
+
# de-normalize click_point (width, height)
|
237 |
+
click_point = [click_point[0] * image_input.size[0], click_point[1] * image_input.size[1]]
|
238 |
+
|
239 |
+
image_som = plot_circles_with_marks(
|
240 |
+
image_input,
|
241 |
+
[click_point],
|
242 |
+
som_generator,
|
243 |
+
edgecolor=(255,127,111),
|
244 |
+
linewidth=3,
|
245 |
+
fn_save=None,
|
246 |
+
normalized_to_pixel=False,
|
247 |
+
add_mark=False
|
248 |
+
)
|
249 |
+
except:
|
250 |
+
image_som = image_input
|
251 |
+
|
252 |
+
return image_som, str(parsed_content_list)
|
253 |
+
|
254 |
+
with gr.Blocks() as demo:
|
255 |
+
gr.Markdown(MARKDOWN)
|
256 |
+
with gr.Row():
|
257 |
+
with gr.Column():
|
258 |
+
image_input_component = gr.Image(
|
259 |
+
type='pil', label='Upload image')
|
260 |
+
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
|
261 |
+
with gr.Accordion("Parameters", open=False) as parameter_row:
|
262 |
+
box_threshold_component = gr.Slider(
|
263 |
+
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
|
264 |
+
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
|
265 |
+
iou_threshold_component = gr.Slider(
|
266 |
+
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
|
267 |
+
use_paddleocr_component = gr.Checkbox(
|
268 |
+
label='Use PaddleOCR', value=True)
|
269 |
+
imgsz_component = gr.Slider(
|
270 |
+
label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640)
|
271 |
+
# text box
|
272 |
+
text_input_component = gr.Textbox(label='Text Input', placeholder='Text Input')
|
273 |
+
submit_button_component = gr.Button(
|
274 |
+
value='Submit', variant='primary')
|
275 |
+
with gr.Column():
|
276 |
+
image_output_component = gr.Image(type='pil', label='Image Output')
|
277 |
+
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
|
278 |
+
|
279 |
+
submit_button_component.click(
|
280 |
+
fn=process,
|
281 |
+
inputs=[
|
282 |
+
image_input_component,
|
283 |
+
box_threshold_component,
|
284 |
+
iou_threshold_component,
|
285 |
+
use_paddleocr_component,
|
286 |
+
imgsz_component,
|
287 |
+
text_input_component
|
288 |
+
],
|
289 |
+
outputs=[image_output_component, text_output_component]
|
290 |
+
)
|
291 |
+
|
292 |
+
# demo.launch(debug=False, show_error=True, share=True)
|
293 |
+
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
294 |
+
demo.queue().launch(share=False)
|
requirements.txt
CHANGED
@@ -1 +1,15 @@
|
|
1 |
-
huggingface_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
spaces
|
3 |
+
gradio
|
4 |
+
numpy
|
5 |
+
torch
|
6 |
+
Pillow
|
7 |
+
re
|
8 |
+
ultralytics
|
9 |
+
transformers
|
10 |
+
opencv-python
|
11 |
+
supervision
|
12 |
+
easyocr
|
13 |
+
paddleocr
|
14 |
+
requests
|
15 |
+
networkx
|
util/__init__.py
ADDED
File without changes
|
util/arial.ttf
ADDED
Binary file (312 kB). View file
|
|
util/box_annotator.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Union, Tuple
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from supervision.detection.core import Detections
|
7 |
+
from supervision.draw.color import Color, ColorPalette
|
8 |
+
|
9 |
+
|
10 |
+
class BoxAnnotator:
|
11 |
+
"""
|
12 |
+
A class for drawing bounding boxes on an image using detections provided.
|
13 |
+
|
14 |
+
Attributes:
|
15 |
+
color (Union[Color, ColorPalette]): The color to draw the bounding box,
|
16 |
+
can be a single color or a color palette
|
17 |
+
thickness (int): The thickness of the bounding box lines, default is 2
|
18 |
+
text_color (Color): The color of the text on the bounding box, default is white
|
19 |
+
text_scale (float): The scale of the text on the bounding box, default is 0.5
|
20 |
+
text_thickness (int): The thickness of the text on the bounding box,
|
21 |
+
default is 1
|
22 |
+
text_padding (int): The padding around the text on the bounding box,
|
23 |
+
default is 5
|
24 |
+
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
color: Union[Color, ColorPalette] = ColorPalette.DEFAULT,
|
30 |
+
thickness: int = 3, # 1 for seeclick 2 for mind2web and 3 for demo
|
31 |
+
text_color: Color = Color.BLACK,
|
32 |
+
text_scale: float = 0.5, # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
|
33 |
+
text_thickness: int = 2, #1, # 2 for demo
|
34 |
+
text_padding: int = 10,
|
35 |
+
avoid_overlap: bool = True,
|
36 |
+
):
|
37 |
+
self.color: Union[Color, ColorPalette] = color
|
38 |
+
self.thickness: int = thickness
|
39 |
+
self.text_color: Color = text_color
|
40 |
+
self.text_scale: float = text_scale
|
41 |
+
self.text_thickness: int = text_thickness
|
42 |
+
self.text_padding: int = text_padding
|
43 |
+
self.avoid_overlap: bool = avoid_overlap
|
44 |
+
|
45 |
+
def annotate(
|
46 |
+
self,
|
47 |
+
scene: np.ndarray,
|
48 |
+
detections: Detections,
|
49 |
+
labels: Optional[List[str]] = None,
|
50 |
+
skip_label: bool = False,
|
51 |
+
image_size: Optional[Tuple[int, int]] = None,
|
52 |
+
) -> np.ndarray:
|
53 |
+
"""
|
54 |
+
Draws bounding boxes on the frame using the detections provided.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
scene (np.ndarray): The image on which the bounding boxes will be drawn
|
58 |
+
detections (Detections): The detections for which the
|
59 |
+
bounding boxes will be drawn
|
60 |
+
labels (Optional[List[str]]): An optional list of labels
|
61 |
+
corresponding to each detection. If `labels` are not provided,
|
62 |
+
corresponding `class_id` will be used as label.
|
63 |
+
skip_label (bool): Is set to `True`, skips bounding box label annotation.
|
64 |
+
Returns:
|
65 |
+
np.ndarray: The image with the bounding boxes drawn on it
|
66 |
+
|
67 |
+
Example:
|
68 |
+
```python
|
69 |
+
import supervision as sv
|
70 |
+
|
71 |
+
classes = ['person', ...]
|
72 |
+
image = ...
|
73 |
+
detections = sv.Detections(...)
|
74 |
+
|
75 |
+
box_annotator = sv.BoxAnnotator()
|
76 |
+
labels = [
|
77 |
+
f"{classes[class_id]} {confidence:0.2f}"
|
78 |
+
for _, _, confidence, class_id, _ in detections
|
79 |
+
]
|
80 |
+
annotated_frame = box_annotator.annotate(
|
81 |
+
scene=image.copy(),
|
82 |
+
detections=detections,
|
83 |
+
labels=labels
|
84 |
+
)
|
85 |
+
```
|
86 |
+
"""
|
87 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
88 |
+
for i in range(len(detections)):
|
89 |
+
x1, y1, x2, y2 = detections.xyxy[i].astype(int)
|
90 |
+
class_id = (
|
91 |
+
detections.class_id[i] if detections.class_id is not None else None
|
92 |
+
)
|
93 |
+
idx = class_id if class_id is not None else i
|
94 |
+
color = (
|
95 |
+
self.color.by_idx(idx)
|
96 |
+
if isinstance(self.color, ColorPalette)
|
97 |
+
else self.color
|
98 |
+
)
|
99 |
+
cv2.rectangle(
|
100 |
+
img=scene,
|
101 |
+
pt1=(x1, y1),
|
102 |
+
pt2=(x2, y2),
|
103 |
+
color=color.as_bgr(),
|
104 |
+
thickness=self.thickness,
|
105 |
+
)
|
106 |
+
if skip_label:
|
107 |
+
continue
|
108 |
+
|
109 |
+
text = (
|
110 |
+
f"{class_id}"
|
111 |
+
if (labels is None or len(detections) != len(labels))
|
112 |
+
else labels[i]
|
113 |
+
)
|
114 |
+
|
115 |
+
text_width, text_height = cv2.getTextSize(
|
116 |
+
text=text,
|
117 |
+
fontFace=font,
|
118 |
+
fontScale=self.text_scale,
|
119 |
+
thickness=self.text_thickness,
|
120 |
+
)[0]
|
121 |
+
|
122 |
+
if not self.avoid_overlap:
|
123 |
+
text_x = x1 + self.text_padding
|
124 |
+
text_y = y1 - self.text_padding
|
125 |
+
|
126 |
+
text_background_x1 = x1
|
127 |
+
text_background_y1 = y1 - 2 * self.text_padding - text_height
|
128 |
+
|
129 |
+
text_background_x2 = x1 + 2 * self.text_padding + text_width
|
130 |
+
text_background_y2 = y1
|
131 |
+
# text_x = x1 - self.text_padding - text_width
|
132 |
+
# text_y = y1 + self.text_padding + text_height
|
133 |
+
# text_background_x1 = x1 - 2 * self.text_padding - text_width
|
134 |
+
# text_background_y1 = y1
|
135 |
+
# text_background_x2 = x1
|
136 |
+
# text_background_y2 = y1 + 2 * self.text_padding + text_height
|
137 |
+
else:
|
138 |
+
text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2 = get_optimal_label_pos(self.text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size)
|
139 |
+
|
140 |
+
cv2.rectangle(
|
141 |
+
img=scene,
|
142 |
+
pt1=(text_background_x1, text_background_y1),
|
143 |
+
pt2=(text_background_x2, text_background_y2),
|
144 |
+
color=color.as_bgr(),
|
145 |
+
thickness=cv2.FILLED,
|
146 |
+
)
|
147 |
+
# import pdb; pdb.set_trace()
|
148 |
+
box_color = color.as_rgb()
|
149 |
+
luminance = 0.299 * box_color[0] + 0.587 * box_color[1] + 0.114 * box_color[2]
|
150 |
+
text_color = (0,0,0) if luminance > 160 else (255,255,255)
|
151 |
+
cv2.putText(
|
152 |
+
img=scene,
|
153 |
+
text=text,
|
154 |
+
org=(text_x, text_y),
|
155 |
+
fontFace=font,
|
156 |
+
fontScale=self.text_scale,
|
157 |
+
# color=self.text_color.as_rgb(),
|
158 |
+
color=text_color,
|
159 |
+
thickness=self.text_thickness,
|
160 |
+
lineType=cv2.LINE_AA,
|
161 |
+
)
|
162 |
+
return scene
|
163 |
+
|
164 |
+
|
165 |
+
def box_area(box):
|
166 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
167 |
+
|
168 |
+
def intersection_area(box1, box2):
|
169 |
+
x1 = max(box1[0], box2[0])
|
170 |
+
y1 = max(box1[1], box2[1])
|
171 |
+
x2 = min(box1[2], box2[2])
|
172 |
+
y2 = min(box1[3], box2[3])
|
173 |
+
return max(0, x2 - x1) * max(0, y2 - y1)
|
174 |
+
|
175 |
+
def IoU(box1, box2, return_max=True):
|
176 |
+
intersection = intersection_area(box1, box2)
|
177 |
+
union = box_area(box1) + box_area(box2) - intersection
|
178 |
+
if box_area(box1) > 0 and box_area(box2) > 0:
|
179 |
+
ratio1 = intersection / box_area(box1)
|
180 |
+
ratio2 = intersection / box_area(box2)
|
181 |
+
else:
|
182 |
+
ratio1, ratio2 = 0, 0
|
183 |
+
if return_max:
|
184 |
+
return max(intersection / union, ratio1, ratio2)
|
185 |
+
else:
|
186 |
+
return intersection / union
|
187 |
+
|
188 |
+
|
189 |
+
def get_optimal_label_pos(text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size):
|
190 |
+
""" check overlap of text and background detection box, and get_optimal_label_pos,
|
191 |
+
pos: str, position of the text, must be one of 'top left', 'top right', 'outer left', 'outer right' TODO: if all are overlapping, return the last one, i.e. outer right
|
192 |
+
Threshold: default to 0.3
|
193 |
+
"""
|
194 |
+
|
195 |
+
def get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size):
|
196 |
+
is_overlap = False
|
197 |
+
for i in range(len(detections)):
|
198 |
+
detection = detections.xyxy[i].astype(int)
|
199 |
+
if IoU([text_background_x1, text_background_y1, text_background_x2, text_background_y2], detection) > 0.3:
|
200 |
+
is_overlap = True
|
201 |
+
break
|
202 |
+
# check if the text is out of the image
|
203 |
+
if text_background_x1 < 0 or text_background_x2 > image_size[0] or text_background_y1 < 0 or text_background_y2 > image_size[1]:
|
204 |
+
is_overlap = True
|
205 |
+
return is_overlap
|
206 |
+
|
207 |
+
# if pos == 'top left':
|
208 |
+
text_x = x1 + text_padding
|
209 |
+
text_y = y1 - text_padding
|
210 |
+
|
211 |
+
text_background_x1 = x1
|
212 |
+
text_background_y1 = y1 - 2 * text_padding - text_height
|
213 |
+
|
214 |
+
text_background_x2 = x1 + 2 * text_padding + text_width
|
215 |
+
text_background_y2 = y1
|
216 |
+
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
217 |
+
if not is_overlap:
|
218 |
+
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
219 |
+
|
220 |
+
# elif pos == 'outer left':
|
221 |
+
text_x = x1 - text_padding - text_width
|
222 |
+
text_y = y1 + text_padding + text_height
|
223 |
+
|
224 |
+
text_background_x1 = x1 - 2 * text_padding - text_width
|
225 |
+
text_background_y1 = y1
|
226 |
+
|
227 |
+
text_background_x2 = x1
|
228 |
+
text_background_y2 = y1 + 2 * text_padding + text_height
|
229 |
+
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
230 |
+
if not is_overlap:
|
231 |
+
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
232 |
+
|
233 |
+
|
234 |
+
# elif pos == 'outer right':
|
235 |
+
text_x = x2 + text_padding
|
236 |
+
text_y = y1 + text_padding + text_height
|
237 |
+
|
238 |
+
text_background_x1 = x2
|
239 |
+
text_background_y1 = y1
|
240 |
+
|
241 |
+
text_background_x2 = x2 + 2 * text_padding + text_width
|
242 |
+
text_background_y2 = y1 + 2 * text_padding + text_height
|
243 |
+
|
244 |
+
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
245 |
+
if not is_overlap:
|
246 |
+
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
247 |
+
|
248 |
+
# elif pos == 'top right':
|
249 |
+
text_x = x2 - text_padding - text_width
|
250 |
+
text_y = y1 - text_padding
|
251 |
+
|
252 |
+
text_background_x1 = x2 - 2 * text_padding - text_width
|
253 |
+
text_background_y1 = y1 - 2 * text_padding - text_height
|
254 |
+
|
255 |
+
text_background_x2 = x2
|
256 |
+
text_background_y2 = y1
|
257 |
+
|
258 |
+
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
259 |
+
if not is_overlap:
|
260 |
+
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
261 |
+
|
262 |
+
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
util/omniparser.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from util.utils import get_som_labeled_img, get_caption_model_processor, get_yolo_model, check_ocr_box
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import base64
|
6 |
+
from typing import Dict
|
7 |
+
class Omniparser(object):
|
8 |
+
def __init__(self, config: Dict):
|
9 |
+
self.config = config
|
10 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
+
|
12 |
+
self.som_model = get_yolo_model(model_path=config['som_model_path'])
|
13 |
+
self.caption_model_processor = get_caption_model_processor(model_name=config['caption_model_name'], model_name_or_path=config['caption_model_path'], device=device)
|
14 |
+
print('Omniparser initialized!!!')
|
15 |
+
|
16 |
+
def parse(self, image_base64: str):
|
17 |
+
image_bytes = base64.b64decode(image_base64)
|
18 |
+
image = Image.open(io.BytesIO(image_bytes))
|
19 |
+
print('image size:', image.size)
|
20 |
+
|
21 |
+
box_overlay_ratio = max(image.size) / 3200
|
22 |
+
draw_bbox_config = {
|
23 |
+
'text_scale': 0.8 * box_overlay_ratio,
|
24 |
+
'text_thickness': max(int(2 * box_overlay_ratio), 1),
|
25 |
+
'text_padding': max(int(3 * box_overlay_ratio), 1),
|
26 |
+
'thickness': max(int(3 * box_overlay_ratio), 1),
|
27 |
+
}
|
28 |
+
|
29 |
+
(text, ocr_bbox), _ = check_ocr_box(image, display_img=False, output_bb_format='xyxy', easyocr_args={'text_threshold': 0.8}, use_paddleocr=False)
|
30 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image, self.som_model, BOX_TRESHOLD = self.config['BOX_TRESHOLD'], output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=self.caption_model_processor, ocr_text=text,use_local_semantics=True, iou_threshold=0.7, scale_img=False, batch_size=128)
|
31 |
+
|
32 |
+
return dino_labled_img, parsed_content_list
|
util/process_utils.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
# is instruction English
|
4 |
+
def is_english_simple(text):
|
5 |
+
try:
|
6 |
+
text.encode(encoding='utf-8').decode('ascii')
|
7 |
+
except UnicodeDecodeError:
|
8 |
+
return False
|
9 |
+
else:
|
10 |
+
return True
|
11 |
+
|
12 |
+
# bbox -> point (str)
|
13 |
+
def bbox_2_point(bbox, dig=2):
|
14 |
+
# bbox [left, top, right, bottom]
|
15 |
+
point = [(bbox[0]+bbox[2])/2, (bbox[1]+bbox[3])/2]
|
16 |
+
point = [f"{item:.2f}" for item in point]
|
17 |
+
point_str = "({},{})".format(point[0], point[1])
|
18 |
+
return point_str
|
19 |
+
|
20 |
+
# bbox -> bbox (str)
|
21 |
+
def bbox_2_bbox(bbox, dig=2):
|
22 |
+
bbox = [f"{item:.2f}" for item in bbox]
|
23 |
+
bbox_str = "({},{},{},{})".format(bbox[0], bbox[1], bbox[2], bbox[3])
|
24 |
+
return bbox_str
|
25 |
+
|
26 |
+
# point (str) -> point
|
27 |
+
def pred_2_point(s):
|
28 |
+
floats = re.findall(r'-?\d+\.?\d*', s)
|
29 |
+
floats = [float(num) for num in floats]
|
30 |
+
if len(floats) == 2:
|
31 |
+
click_point = floats
|
32 |
+
elif len(floats) == 4:
|
33 |
+
click_point = [(floats[0]+floats[2])/2, (floats[1]+floats[3])/2]
|
34 |
+
return click_point
|
35 |
+
|
36 |
+
# bbox (qwen str) -> bbox
|
37 |
+
def extract_bbox(s):
|
38 |
+
# Regular expression to find the content inside <box> and </box>
|
39 |
+
pattern = r"<box>\((\d+,\d+)\),\((\d+,\d+)\)</box>"
|
40 |
+
matches = re.findall(pattern, s)
|
41 |
+
# Convert the tuples of strings into tuples of integers
|
42 |
+
return [(int(x.split(',')[0]), int(x.split(',')[1])) for x in sum(matches, ())]
|
43 |
+
|
44 |
+
def extract_mark_id(s):
|
45 |
+
match = re.search(r'Mark: (\d+)', s)
|
46 |
+
if match:
|
47 |
+
return int(match.group(1))
|
48 |
+
return None
|
util/som.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import base64
|
6 |
+
device = 'cuda'
|
7 |
+
|
8 |
+
from PIL import Image, ImageDraw, ImageFont
|
9 |
+
import numpy as np
|
10 |
+
import networkx as nx
|
11 |
+
# import cv2
|
12 |
+
|
13 |
+
font_path = "agents/ui_agent/util/arial.ttf"
|
14 |
+
class MarkHelper:
|
15 |
+
def __init__(self):
|
16 |
+
self.markSize_dict = {}
|
17 |
+
self.font_dict = {}
|
18 |
+
self.min_font_size = 20 # 1 in v1
|
19 |
+
self.max_font_size = 30
|
20 |
+
self.max_font_proportion = 0.04 # 0.032 in v1
|
21 |
+
|
22 |
+
def __get_markSize(self, text, image_height, image_width, font):
|
23 |
+
im = Image.new('RGB', (image_width, image_height))
|
24 |
+
draw = ImageDraw.Draw(im)
|
25 |
+
_, _, width, height = draw.textbbox((0, 0), text=text, font=font)
|
26 |
+
return height, width
|
27 |
+
|
28 |
+
def _setup_new_font(self, image_height, image_width):
|
29 |
+
key = f"{image_height}_{image_width}"
|
30 |
+
# print(f"Setting up new font for image size: {key}")
|
31 |
+
|
32 |
+
# setup the font
|
33 |
+
fontsize = self.min_font_size
|
34 |
+
font = ImageFont.truetype(font_path, fontsize)
|
35 |
+
# font = ImageFont.load_default(size=fontsize)
|
36 |
+
while min(self.__get_markSize("555", image_height, image_width, font)) < min(self.max_font_size, self.max_font_proportion * min(image_height, image_width)):
|
37 |
+
# iterate until the text size is just larger than the criteria
|
38 |
+
fontsize += 1
|
39 |
+
font = ImageFont.truetype(font_path, fontsize)
|
40 |
+
# font = ImageFont.load_default(size=fontsize)
|
41 |
+
self.font_dict[key] = font
|
42 |
+
|
43 |
+
# setup the markSize dict
|
44 |
+
markSize_3digits = self.__get_markSize('555', image_height, image_width, font)
|
45 |
+
markSize_2digits = self.__get_markSize('55', image_height, image_width, font)
|
46 |
+
markSize_1digit = self.__get_markSize('5', image_height, image_width, font)
|
47 |
+
self.markSize_dict[key] = {
|
48 |
+
1: markSize_1digit,
|
49 |
+
2: markSize_2digits,
|
50 |
+
3: markSize_3digits
|
51 |
+
}
|
52 |
+
|
53 |
+
def get_font(self, image_height, image_width):
|
54 |
+
key = f"{image_height}_{image_width}"
|
55 |
+
if key not in self.font_dict:
|
56 |
+
self._setup_new_font(image_height, image_width)
|
57 |
+
return self.font_dict[key]
|
58 |
+
|
59 |
+
def get_mark_size(self, text_str, image_height, image_width):
|
60 |
+
"""Get the font size for the given image dimensions."""
|
61 |
+
key = f"{image_height}_{image_width}"
|
62 |
+
if key not in self.markSize_dict:
|
63 |
+
self._setup_new_font(image_height, image_width)
|
64 |
+
|
65 |
+
largest_size = self.markSize_dict[key].get(3, None)
|
66 |
+
text_h, text_w = self.markSize_dict[key].get(len(text_str), largest_size) # default to the largest size if the text is too long
|
67 |
+
return text_h, text_w
|
68 |
+
|
69 |
+
def __calculate_iou(box1, box2, return_area=False):
|
70 |
+
"""
|
71 |
+
Calculate the Intersection over Union (IoU) of two bounding boxes.
|
72 |
+
:param box1: Tuple of (y, x, h, w) for the first bounding box
|
73 |
+
:param box2: Tuple of (y, x, h, w) for the second bounding box
|
74 |
+
:return: IoU value
|
75 |
+
"""
|
76 |
+
y1, x1, h1, w1 = box1
|
77 |
+
y2, x2, h2, w2 = box2
|
78 |
+
|
79 |
+
# Calculate the intersection area
|
80 |
+
y_min = max(y1, y2)
|
81 |
+
x_min = max(x1, x2)
|
82 |
+
y_max = min(y1 + h1, y2 + h2)
|
83 |
+
x_max = min(x1 + w1, x2 + w2)
|
84 |
+
|
85 |
+
intersection_area = max(0, y_max - y_min) * max(0, x_max - x_min)
|
86 |
+
|
87 |
+
# Compute the area of both bounding boxes
|
88 |
+
box1_area = h1 * w1
|
89 |
+
box2_area = h2 * w2
|
90 |
+
|
91 |
+
# Calculate the IoU
|
92 |
+
# iou = intersection_area / box1_area + box2_area - intersection_area
|
93 |
+
iou = intersection_area / (min(box1_area, box2_area) + 0.0001)
|
94 |
+
|
95 |
+
if return_area:
|
96 |
+
return iou, intersection_area
|
97 |
+
return iou
|
98 |
+
|
99 |
+
def __calculate_nearest_corner_distance(box1, box2):
|
100 |
+
"""Calculate the distance between the nearest edge or corner of two bounding boxes."""
|
101 |
+
y1, x1, h1, w1 = box1
|
102 |
+
y2, x2, h2, w2 = box2
|
103 |
+
corners1 = np.array([
|
104 |
+
[y1, x1],
|
105 |
+
[y1, x1 + w1],
|
106 |
+
[y1 + h1, x1],
|
107 |
+
[y1 + h1, x1 + w1]
|
108 |
+
])
|
109 |
+
corners2 = np.array([
|
110 |
+
[y2, x2],
|
111 |
+
[y2, x2 + w2],
|
112 |
+
[y2 + h2, x2],
|
113 |
+
[y2 + h2, x2 + w2]
|
114 |
+
])
|
115 |
+
# Calculate pairwise distances between corners
|
116 |
+
distances = np.linalg.norm(corners1[:, np.newaxis] - corners2, axis=2)
|
117 |
+
|
118 |
+
# Find the minimum distance
|
119 |
+
min_distance = np.min(distances)
|
120 |
+
return min_distance
|
121 |
+
|
122 |
+
def _find_least_overlapping_corner(bbox, bboxes, drawn_boxes, text_size, image_size):
|
123 |
+
"""Find the corner with the least overlap with other bboxes.
|
124 |
+
Args:
|
125 |
+
bbox: (y, x, h, w) The bounding box to place the text on.
|
126 |
+
bboxes: [(y, x, h, w)] The list of bounding boxes to compare against.
|
127 |
+
drawn_boxes: [(y, x, h, w)] The list of bounding boxes that have already been drawn on.
|
128 |
+
text_size: (height, width) The size of the text to be drawn.
|
129 |
+
image_size: (height, width) The size of the image.
|
130 |
+
"""
|
131 |
+
y, x, h, w = bbox
|
132 |
+
h_text, w_text = text_size
|
133 |
+
image_height, image_width = image_size
|
134 |
+
corners = [
|
135 |
+
# top-left
|
136 |
+
(y - h_text, x),
|
137 |
+
# top-right
|
138 |
+
(y - h_text, x + w - w_text),
|
139 |
+
# right-top
|
140 |
+
(y, x + w),
|
141 |
+
# right-bottom
|
142 |
+
(y + h - h_text, x + w),
|
143 |
+
# bottom-right
|
144 |
+
(y + h, x + w - w_text),
|
145 |
+
# bottom-left
|
146 |
+
(y + h, x),
|
147 |
+
# left-bottom
|
148 |
+
(y + h - h_text, x - w_text),
|
149 |
+
# left-top
|
150 |
+
(y, x - w_text),
|
151 |
+
]
|
152 |
+
best_corner = corners[0]
|
153 |
+
max_flag = float('inf')
|
154 |
+
|
155 |
+
for corner in corners:
|
156 |
+
corner_bbox = (corner[0], corner[1], h_text, w_text)
|
157 |
+
# if the corner is out of the image, skip
|
158 |
+
if corner[0] < 0 or corner[1] < 0 or corner[0] + h_text > image_height or corner[1] + w_text > image_width:
|
159 |
+
continue
|
160 |
+
max_iou = - (image_width + image_height)
|
161 |
+
# 找到关于这个角最差的 case
|
162 |
+
# given the current corner, find the larget iou with other bboxes.
|
163 |
+
for other_bbox in bboxes + drawn_boxes:
|
164 |
+
if np.array_equal(bbox, other_bbox):
|
165 |
+
continue
|
166 |
+
iou = __calculate_iou(corner_bbox, other_bbox, return_area=True)[1]
|
167 |
+
max_iou = max(max_iou, iou - 0.0001 * __calculate_nearest_corner_distance(corner_bbox, other_bbox))
|
168 |
+
# the smaller the max_IOU, the better the corner
|
169 |
+
# 取最差的值 相对最好的那个角
|
170 |
+
if max_iou < max_flag:
|
171 |
+
max_flag = max_iou
|
172 |
+
best_corner = corner
|
173 |
+
|
174 |
+
return best_corner
|
175 |
+
|
176 |
+
def plot_boxes_with_marks(
|
177 |
+
image: Image.Image,
|
178 |
+
bboxes, # (y, x, h, w)
|
179 |
+
mark_helper: MarkHelper,
|
180 |
+
linewidth=2,
|
181 |
+
alpha=0,
|
182 |
+
edgecolor=None,
|
183 |
+
fn_save=None,
|
184 |
+
normalized_to_pixel=True,
|
185 |
+
add_mark=True
|
186 |
+
) -> np.ndarray:
|
187 |
+
"""Plots bounding boxes on an image with marks attached to the edges of the boxes where no overlap with other boxes occurs.
|
188 |
+
Args:
|
189 |
+
image: The image to plot the bounding boxes on.
|
190 |
+
bboxes: A 2D int array of shape (num_boxes, 4), where each row represents a bounding box: (y_top_left, x_top_left, box_height, box_width). If normalized_to_pixel is True, the values are float and are normalized with the image size. If normalized_to_pixel is False, the values are int and are in pixel.
|
191 |
+
"""
|
192 |
+
# Then modify the drawing code
|
193 |
+
draw = ImageDraw.Draw(image)
|
194 |
+
|
195 |
+
# draw boxes on the image
|
196 |
+
image_width, image_height = image.size
|
197 |
+
|
198 |
+
if normalized_to_pixel:
|
199 |
+
bboxes = [(int(y * image_height), int(x * image_width), int(h * image_height), int(w * image_width)) for y, x, h, w in bboxes]
|
200 |
+
|
201 |
+
for box in bboxes:
|
202 |
+
y, x, h, w = box
|
203 |
+
draw.rectangle([x, y, x + w, y + h], outline=edgecolor, width=linewidth)
|
204 |
+
|
205 |
+
# Draw the bounding boxes with index at the least overlapping corner
|
206 |
+
drawn_boxes = []
|
207 |
+
for idx, bbox in enumerate(bboxes):
|
208 |
+
text = str(idx)
|
209 |
+
text_h, text_w = mark_helper.get_mark_size(text, image_height, image_width)
|
210 |
+
corner_y, corner_x = _find_least_overlapping_corner(
|
211 |
+
bbox, bboxes, drawn_boxes, (text_h, text_w), (image_height, image_width))
|
212 |
+
|
213 |
+
# Define the index box (y, x, y + h, x + w)
|
214 |
+
text_box = (corner_y, corner_x, text_h, text_w)
|
215 |
+
|
216 |
+
if add_mark:
|
217 |
+
# Draw the filled index box and text
|
218 |
+
draw.rectangle([corner_x, corner_y, corner_x + text_w, corner_y + text_h], # (x, y, x + w, y + h)
|
219 |
+
fill="red")
|
220 |
+
font = mark_helper.get_font(image_height, image_width)
|
221 |
+
draw.text((corner_x, corner_y), text, fill='white', font=font)
|
222 |
+
|
223 |
+
# Update the list of drawn boxes
|
224 |
+
drawn_boxes.append(np.array(text_box))
|
225 |
+
|
226 |
+
if fn_save is not None: # PIL image
|
227 |
+
image.save(fn_save)
|
228 |
+
return image
|
229 |
+
|
230 |
+
def plot_circles_with_marks(
|
231 |
+
image: Image.Image,
|
232 |
+
points, # (x, y)
|
233 |
+
mark_helper: MarkHelper,
|
234 |
+
linewidth=2,
|
235 |
+
edgecolor=None,
|
236 |
+
fn_save=None,
|
237 |
+
normalized_to_pixel=True,
|
238 |
+
add_mark=True
|
239 |
+
) -> np.ndarray:
|
240 |
+
"""Plots bounding boxes on an image with marks attached to the edges of the boxes where no overlap with other boxes occurs.
|
241 |
+
Args:
|
242 |
+
image: The image to plot the bounding boxes on.
|
243 |
+
bboxes: A 2D int array of shape (num_boxes, 4), where each row represents a bounding box: (y_top_left, x_top_left, box_height, box_width). If normalized_to_pixel is True, the values are float and are normalized with the image size. If normalized_to_pixel is False, the values are int and are in pixel.
|
244 |
+
"""
|
245 |
+
# draw boxes on the image
|
246 |
+
image_width, image_height = image.size
|
247 |
+
|
248 |
+
if normalized_to_pixel:
|
249 |
+
bboxes = [(int(y * image_height), int(x * image_width), int(h * image_height), int(w * image_width)) for y, x, h, w in bboxes]
|
250 |
+
|
251 |
+
draw = ImageDraw.Draw(image)
|
252 |
+
for point in points:
|
253 |
+
x, y = point
|
254 |
+
draw.circle((x, y), radius=5, outline=edgecolor, width=linewidth)
|
255 |
+
|
256 |
+
if fn_save is not None: # PIL image
|
257 |
+
image.save(fn_save)
|
258 |
+
return image
|
259 |
+
|
260 |
+
markhelper = MarkHelper()
|
261 |
+
|
262 |
+
BBOX_DEDUPLICATION_IOU_PROPORTION = 0.5
|
263 |
+
BBOX_GROUPING_VERTICAL_THRESHOLD = 20
|
264 |
+
BBOX_GROUPING_HORIZONTAL_THRESHOLD = 20
|
265 |
+
BBOX_AUG_TARGET = 2.0
|
266 |
+
|
267 |
+
def _is_boxes_same_line_or_near(bbox1, bbox2, vertical_threshold, horizontal_threshold):
|
268 |
+
"""check if two boxes are in the same line or close enough to be considered together"""
|
269 |
+
y1, x1, h1, w1 = bbox1
|
270 |
+
y2, x2, h2, w2 = bbox2
|
271 |
+
|
272 |
+
# Check if the boxes are close horizontally (consider the edge case where the boxes are touching)
|
273 |
+
horizontally_close = (x1 <= x2 and x2 - x1 <= w1 + horizontal_threshold) or (x2 <= x1 and x1 - x2 <= w2 + horizontal_threshold)
|
274 |
+
|
275 |
+
# Check if the boxes are close vertically (consider the edge case where the boxes are touching)
|
276 |
+
vertically_close = (y1 <= y2 and y2 - y1 <= h1 + vertical_threshold) or (y2 <= y1 and y1 - y2 <= h2 + vertical_threshold)
|
277 |
+
|
278 |
+
# Consider the boxes to be in the same line if they are vertically close and either overlap or are close horizontally
|
279 |
+
return vertically_close and horizontally_close
|
280 |
+
|
281 |
+
def _build_adjacency_matrix(bboxes, vertical_threshold, horizontal_threshold):
|
282 |
+
"""Build the adjacency matrix based on the merging criteria."""
|
283 |
+
num_boxes = len(bboxes)
|
284 |
+
A = np.zeros((num_boxes, num_boxes), dtype=int)
|
285 |
+
|
286 |
+
for i in range(num_boxes):
|
287 |
+
for j in range(i + 1, num_boxes):
|
288 |
+
if _is_boxes_same_line_or_near(bboxes[i], bboxes[j], vertical_threshold, horizontal_threshold):
|
289 |
+
A[i, j] = 1
|
290 |
+
A[j, i] = 1 # Symmetric matrix
|
291 |
+
|
292 |
+
return A
|
293 |
+
|
294 |
+
def merge_connected_bboxes(bboxes, text_details,
|
295 |
+
vertical_threshold=BBOX_GROUPING_VERTICAL_THRESHOLD,
|
296 |
+
horizontal_threshold=BBOX_GROUPING_HORIZONTAL_THRESHOLD
|
297 |
+
):
|
298 |
+
"""Merge bboxes based on the adjacency matrix and return merged bboxes.
|
299 |
+
Args:
|
300 |
+
bboxes: A 2D array of shape (num_boxes, 4), where each row represents a bounding box: (y, x, height, width).
|
301 |
+
text_details: A list of text details for each bounding box.
|
302 |
+
vertical_threshold: The maximum vertical distance between two boxes to be considered in the same line.
|
303 |
+
horizontal_threshold: The maximum horizontal distance between two boxes to be considered close.
|
304 |
+
"""
|
305 |
+
# return if there are no bboxes
|
306 |
+
if len(bboxes) <= 1:
|
307 |
+
return bboxes, text_details
|
308 |
+
|
309 |
+
# Convert bboxes (x1, y1, x2, y2) to (y, x, height, width) format
|
310 |
+
bboxes = np.array(bboxes)
|
311 |
+
bboxes = np.array([bboxes[:, 1], bboxes[:, 0], bboxes[:, 3] - bboxes[:, 1], bboxes[:, 2] - bboxes[:, 0]]).T
|
312 |
+
|
313 |
+
# Build adjacency matrix
|
314 |
+
A = _build_adjacency_matrix(bboxes, vertical_threshold, horizontal_threshold)
|
315 |
+
|
316 |
+
# Create graph from adjacency matrix
|
317 |
+
G = nx.from_numpy_array(A)
|
318 |
+
|
319 |
+
# Find connected components
|
320 |
+
components = list(nx.connected_components(G))
|
321 |
+
|
322 |
+
# Convert bboxes to (y_min, x_min, y_max, x_max) format
|
323 |
+
corners = np.copy(bboxes)
|
324 |
+
corners_y, corners_x, corners_h, corners_w = corners[:, 0], corners[:, 1], corners[:, 2], corners[:, 3]
|
325 |
+
|
326 |
+
corners_y_max = corners_y + corners_h
|
327 |
+
corners_x_max = corners_x + corners_w
|
328 |
+
|
329 |
+
# Merge bboxes for each connected component
|
330 |
+
merged_bboxes = []
|
331 |
+
merged_text_details = []
|
332 |
+
for component in components:
|
333 |
+
indices = list(component) # e.g., [32, 33, 34, 30, 31]
|
334 |
+
indices = sorted(indices)
|
335 |
+
|
336 |
+
# merge the text details
|
337 |
+
merged_text_details.append(' '.join([text_details[i] for i in indices]))
|
338 |
+
|
339 |
+
# merge the bboxes
|
340 |
+
y_min = min(corners_y[i] for i in indices)
|
341 |
+
x_min = min(corners_x[i] for i in indices)
|
342 |
+
y_max = max(corners_y_max[i] for i in indices)
|
343 |
+
x_max = max(corners_x_max[i] for i in indices)
|
344 |
+
merged_bboxes.append((y_min, x_min, y_max - y_min, x_max - x_min)) # Convert merged_bbox back to (y, x, height, width) format
|
345 |
+
|
346 |
+
# convert (y, x, height, width) to (x1, y1, x2, y2) format without np.array
|
347 |
+
merged_bboxes = [(bbox[1], bbox[0], bbox[1] + bbox[3], bbox[0] + bbox[2]) for bbox in merged_bboxes]
|
348 |
+
return merged_bboxes, merged_text_details
|
util/utils.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from ultralytics import YOLO
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import base64
|
5 |
+
import time
|
6 |
+
from PIL import Image, ImageDraw, ImageFont
|
7 |
+
import json
|
8 |
+
import requests
|
9 |
+
# utility function
|
10 |
+
import os
|
11 |
+
|
12 |
+
import json
|
13 |
+
import sys
|
14 |
+
import os
|
15 |
+
import cv2
|
16 |
+
import numpy as np
|
17 |
+
# %matplotlib inline
|
18 |
+
from matplotlib import pyplot as plt
|
19 |
+
import easyocr
|
20 |
+
from paddleocr import PaddleOCR
|
21 |
+
reader = easyocr.Reader(['en'])
|
22 |
+
paddle_ocr = PaddleOCR(
|
23 |
+
lang='en', # other lang also available
|
24 |
+
use_angle_cls=False,
|
25 |
+
use_gpu=False, # using cuda will conflict with pytorch in the same process
|
26 |
+
show_log=False,
|
27 |
+
max_batch_size=1024,
|
28 |
+
use_dilation=True, # improves accuracy
|
29 |
+
det_db_score_mode='slow', # improves accuracy
|
30 |
+
rec_batch_num=1024)
|
31 |
+
import time
|
32 |
+
import base64
|
33 |
+
|
34 |
+
import os
|
35 |
+
import ast
|
36 |
+
import torch
|
37 |
+
from typing import Tuple, List, Union
|
38 |
+
from torchvision.ops import box_convert
|
39 |
+
import re
|
40 |
+
from torchvision.transforms import ToPILImage
|
41 |
+
import supervision as sv
|
42 |
+
import torchvision.transforms as T
|
43 |
+
from util.box_annotator import BoxAnnotator
|
44 |
+
|
45 |
+
|
46 |
+
def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
|
47 |
+
if not device:
|
48 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
49 |
+
if model_name == "blip2":
|
50 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
51 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
52 |
+
if device == 'cpu':
|
53 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
54 |
+
model_name_or_path, device_map=None, torch_dtype=torch.float32
|
55 |
+
)
|
56 |
+
else:
|
57 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
58 |
+
model_name_or_path, device_map=None, torch_dtype=torch.float16
|
59 |
+
).to(device)
|
60 |
+
elif model_name == "florence2":
|
61 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
62 |
+
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
63 |
+
if device == 'cpu':
|
64 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
|
65 |
+
else:
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
|
67 |
+
return {'model': model.to(device), 'processor': processor}
|
68 |
+
|
69 |
+
|
70 |
+
def get_yolo_model(model_path):
|
71 |
+
from ultralytics import YOLO
|
72 |
+
# Load the model.
|
73 |
+
model = YOLO(model_path)
|
74 |
+
return model
|
75 |
+
|
76 |
+
|
77 |
+
@torch.inference_mode()
|
78 |
+
def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=None):
|
79 |
+
# Number of samples per batch, --> 256 roughly takes 23 GB of GPU memory for florence model
|
80 |
+
to_pil = ToPILImage()
|
81 |
+
if starting_idx:
|
82 |
+
non_ocr_boxes = filtered_boxes[starting_idx:]
|
83 |
+
else:
|
84 |
+
non_ocr_boxes = filtered_boxes
|
85 |
+
croped_pil_image = []
|
86 |
+
for i, coord in enumerate(non_ocr_boxes):
|
87 |
+
try:
|
88 |
+
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
|
89 |
+
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
|
90 |
+
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
|
91 |
+
cropped_image = cv2.resize(cropped_image, (64, 64))
|
92 |
+
croped_pil_image.append(to_pil(cropped_image))
|
93 |
+
except:
|
94 |
+
continue
|
95 |
+
|
96 |
+
model, processor = caption_model_processor['model'], caption_model_processor['processor']
|
97 |
+
if not prompt:
|
98 |
+
if 'florence' in model.config.name_or_path:
|
99 |
+
prompt = "<CAPTION>"
|
100 |
+
else:
|
101 |
+
prompt = "The image shows"
|
102 |
+
|
103 |
+
generated_texts = []
|
104 |
+
device = model.device
|
105 |
+
# batch_size = 64
|
106 |
+
for i in range(0, len(croped_pil_image), batch_size):
|
107 |
+
start = time.time()
|
108 |
+
batch = croped_pil_image[i:i+batch_size]
|
109 |
+
t1 = time.time()
|
110 |
+
if model.device.type == 'cuda':
|
111 |
+
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt", do_resize=False).to(device=device, dtype=torch.float16)
|
112 |
+
else:
|
113 |
+
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
|
114 |
+
# if 'florence' in model.config.name_or_path:
|
115 |
+
generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=20,num_beams=1, do_sample=False)
|
116 |
+
# else:
|
117 |
+
# generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True,
|
118 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
119 |
+
generated_text = [gen.strip() for gen in generated_text]
|
120 |
+
generated_texts.extend(generated_text)
|
121 |
+
|
122 |
+
return generated_texts
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
|
127 |
+
to_pil = ToPILImage()
|
128 |
+
if ocr_bbox:
|
129 |
+
non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
|
130 |
+
else:
|
131 |
+
non_ocr_boxes = filtered_boxes
|
132 |
+
croped_pil_image = []
|
133 |
+
for i, coord in enumerate(non_ocr_boxes):
|
134 |
+
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
|
135 |
+
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
|
136 |
+
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
|
137 |
+
croped_pil_image.append(to_pil(cropped_image))
|
138 |
+
|
139 |
+
model, processor = caption_model_processor['model'], caption_model_processor['processor']
|
140 |
+
device = model.device
|
141 |
+
messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
|
142 |
+
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
143 |
+
|
144 |
+
batch_size = 5 # Number of samples per batch
|
145 |
+
generated_texts = []
|
146 |
+
|
147 |
+
for i in range(0, len(croped_pil_image), batch_size):
|
148 |
+
images = croped_pil_image[i:i+batch_size]
|
149 |
+
image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
|
150 |
+
inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
|
151 |
+
texts = [prompt] * len(images)
|
152 |
+
for i, txt in enumerate(texts):
|
153 |
+
input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
|
154 |
+
inputs['input_ids'].append(input['input_ids'])
|
155 |
+
inputs['attention_mask'].append(input['attention_mask'])
|
156 |
+
inputs['pixel_values'].append(input['pixel_values'])
|
157 |
+
inputs['image_sizes'].append(input['image_sizes'])
|
158 |
+
max_len = max([x.shape[1] for x in inputs['input_ids']])
|
159 |
+
for i, v in enumerate(inputs['input_ids']):
|
160 |
+
inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
|
161 |
+
inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
|
162 |
+
inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}
|
163 |
+
|
164 |
+
generation_args = {
|
165 |
+
"max_new_tokens": 25,
|
166 |
+
"temperature": 0.01,
|
167 |
+
"do_sample": False,
|
168 |
+
}
|
169 |
+
generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
|
170 |
+
# # remove input tokens
|
171 |
+
generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
|
172 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
173 |
+
response = [res.strip('\n').strip() for res in response]
|
174 |
+
generated_texts.extend(response)
|
175 |
+
|
176 |
+
return generated_texts
|
177 |
+
|
178 |
+
def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
|
179 |
+
assert ocr_bbox is None or isinstance(ocr_bbox, List)
|
180 |
+
|
181 |
+
def box_area(box):
|
182 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
183 |
+
|
184 |
+
def intersection_area(box1, box2):
|
185 |
+
x1 = max(box1[0], box2[0])
|
186 |
+
y1 = max(box1[1], box2[1])
|
187 |
+
x2 = min(box1[2], box2[2])
|
188 |
+
y2 = min(box1[3], box2[3])
|
189 |
+
return max(0, x2 - x1) * max(0, y2 - y1)
|
190 |
+
|
191 |
+
def IoU(box1, box2):
|
192 |
+
intersection = intersection_area(box1, box2)
|
193 |
+
union = box_area(box1) + box_area(box2) - intersection + 1e-6
|
194 |
+
if box_area(box1) > 0 and box_area(box2) > 0:
|
195 |
+
ratio1 = intersection / box_area(box1)
|
196 |
+
ratio2 = intersection / box_area(box2)
|
197 |
+
else:
|
198 |
+
ratio1, ratio2 = 0, 0
|
199 |
+
return max(intersection / union, ratio1, ratio2)
|
200 |
+
|
201 |
+
def is_inside(box1, box2):
|
202 |
+
# return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
|
203 |
+
intersection = intersection_area(box1, box2)
|
204 |
+
ratio1 = intersection / box_area(box1)
|
205 |
+
return ratio1 > 0.95
|
206 |
+
|
207 |
+
boxes = boxes.tolist()
|
208 |
+
filtered_boxes = []
|
209 |
+
if ocr_bbox:
|
210 |
+
filtered_boxes.extend(ocr_bbox)
|
211 |
+
# print('ocr_bbox!!!', ocr_bbox)
|
212 |
+
for i, box1 in enumerate(boxes):
|
213 |
+
# if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j):
|
214 |
+
is_valid_box = True
|
215 |
+
for j, box2 in enumerate(boxes):
|
216 |
+
# keep the smaller box
|
217 |
+
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
|
218 |
+
is_valid_box = False
|
219 |
+
break
|
220 |
+
if is_valid_box:
|
221 |
+
# add the following 2 lines to include ocr bbox
|
222 |
+
if ocr_bbox:
|
223 |
+
# only add the box if it does not overlap with any ocr bbox
|
224 |
+
if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for k, box3 in enumerate(ocr_bbox)):
|
225 |
+
filtered_boxes.append(box1)
|
226 |
+
else:
|
227 |
+
filtered_boxes.append(box1)
|
228 |
+
return torch.tensor(filtered_boxes)
|
229 |
+
|
230 |
+
|
231 |
+
def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None):
|
232 |
+
'''
|
233 |
+
ocr_bbox format: [{'type': 'text', 'bbox':[x,y], 'interactivity':False, 'content':str }, ...]
|
234 |
+
boxes format: [{'type': 'icon', 'bbox':[x,y], 'interactivity':True, 'content':None }, ...]
|
235 |
+
|
236 |
+
'''
|
237 |
+
assert ocr_bbox is None or isinstance(ocr_bbox, List)
|
238 |
+
|
239 |
+
def box_area(box):
|
240 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
241 |
+
|
242 |
+
def intersection_area(box1, box2):
|
243 |
+
x1 = max(box1[0], box2[0])
|
244 |
+
y1 = max(box1[1], box2[1])
|
245 |
+
x2 = min(box1[2], box2[2])
|
246 |
+
y2 = min(box1[3], box2[3])
|
247 |
+
return max(0, x2 - x1) * max(0, y2 - y1)
|
248 |
+
|
249 |
+
def IoU(box1, box2):
|
250 |
+
intersection = intersection_area(box1, box2)
|
251 |
+
union = box_area(box1) + box_area(box2) - intersection + 1e-6
|
252 |
+
if box_area(box1) > 0 and box_area(box2) > 0:
|
253 |
+
ratio1 = intersection / box_area(box1)
|
254 |
+
ratio2 = intersection / box_area(box2)
|
255 |
+
else:
|
256 |
+
ratio1, ratio2 = 0, 0
|
257 |
+
return max(intersection / union, ratio1, ratio2)
|
258 |
+
|
259 |
+
def is_inside(box1, box2):
|
260 |
+
# return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
|
261 |
+
intersection = intersection_area(box1, box2)
|
262 |
+
ratio1 = intersection / box_area(box1)
|
263 |
+
return ratio1 > 0.80
|
264 |
+
|
265 |
+
# boxes = boxes.tolist()
|
266 |
+
filtered_boxes = []
|
267 |
+
if ocr_bbox:
|
268 |
+
filtered_boxes.extend(ocr_bbox)
|
269 |
+
# print('ocr_bbox!!!', ocr_bbox)
|
270 |
+
for i, box1_elem in enumerate(boxes):
|
271 |
+
box1 = box1_elem['bbox']
|
272 |
+
is_valid_box = True
|
273 |
+
for j, box2_elem in enumerate(boxes):
|
274 |
+
# keep the smaller box
|
275 |
+
box2 = box2_elem['bbox']
|
276 |
+
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
|
277 |
+
is_valid_box = False
|
278 |
+
break
|
279 |
+
if is_valid_box:
|
280 |
+
if ocr_bbox:
|
281 |
+
# keep yolo boxes + prioritize ocr label
|
282 |
+
box_added = False
|
283 |
+
ocr_labels = ''
|
284 |
+
for box3_elem in ocr_bbox:
|
285 |
+
if not box_added:
|
286 |
+
box3 = box3_elem['bbox']
|
287 |
+
if is_inside(box3, box1): # ocr inside icon
|
288 |
+
# box_added = True
|
289 |
+
# delete the box3_elem from ocr_bbox
|
290 |
+
try:
|
291 |
+
# gather all ocr labels
|
292 |
+
ocr_labels += box3_elem['content'] + ' '
|
293 |
+
filtered_boxes.remove(box3_elem)
|
294 |
+
except:
|
295 |
+
continue
|
296 |
+
# break
|
297 |
+
elif is_inside(box1, box3): # icon inside ocr, don't added this icon box, no need to check other ocr bbox bc no overlap between ocr bbox, icon can only be in one ocr box
|
298 |
+
box_added = True
|
299 |
+
break
|
300 |
+
else:
|
301 |
+
continue
|
302 |
+
if not box_added:
|
303 |
+
if ocr_labels:
|
304 |
+
filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': ocr_labels,})
|
305 |
+
else:
|
306 |
+
filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': None, })
|
307 |
+
else:
|
308 |
+
filtered_boxes.append(box1)
|
309 |
+
return filtered_boxes # torch.tensor(filtered_boxes)
|
310 |
+
|
311 |
+
|
312 |
+
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
|
313 |
+
transform = T.Compose(
|
314 |
+
[
|
315 |
+
T.RandomResize([800], max_size=1333),
|
316 |
+
T.ToTensor(),
|
317 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
318 |
+
]
|
319 |
+
)
|
320 |
+
image_source = Image.open(image_path).convert("RGB")
|
321 |
+
image = np.asarray(image_source)
|
322 |
+
image_transformed, _ = transform(image_source, None)
|
323 |
+
return image, image_transformed
|
324 |
+
|
325 |
+
|
326 |
+
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float,
|
327 |
+
text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
|
328 |
+
"""
|
329 |
+
This function annotates an image with bounding boxes and labels.
|
330 |
+
|
331 |
+
Parameters:
|
332 |
+
image_source (np.ndarray): The source image to be annotated.
|
333 |
+
boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
|
334 |
+
logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
|
335 |
+
phrases (List[str]): A list of labels for each bounding box.
|
336 |
+
text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
|
337 |
+
|
338 |
+
Returns:
|
339 |
+
np.ndarray: The annotated image.
|
340 |
+
"""
|
341 |
+
h, w, _ = image_source.shape
|
342 |
+
boxes = boxes * torch.Tensor([w, h, w, h])
|
343 |
+
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
344 |
+
xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
|
345 |
+
detections = sv.Detections(xyxy=xyxy)
|
346 |
+
|
347 |
+
labels = [f"{phrase}" for phrase in range(boxes.shape[0])]
|
348 |
+
|
349 |
+
box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
|
350 |
+
annotated_frame = image_source.copy()
|
351 |
+
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))
|
352 |
+
|
353 |
+
label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
|
354 |
+
return annotated_frame, label_coordinates
|
355 |
+
|
356 |
+
|
357 |
+
def predict(model, image, caption, box_threshold, text_threshold):
|
358 |
+
""" Use huggingface model to replace the original model
|
359 |
+
"""
|
360 |
+
model, processor = model['model'], model['processor']
|
361 |
+
device = model.device
|
362 |
+
|
363 |
+
inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
|
364 |
+
with torch.no_grad():
|
365 |
+
outputs = model(**inputs)
|
366 |
+
|
367 |
+
results = processor.post_process_grounded_object_detection(
|
368 |
+
outputs,
|
369 |
+
inputs.input_ids,
|
370 |
+
box_threshold=box_threshold, # 0.4,
|
371 |
+
text_threshold=text_threshold, # 0.3,
|
372 |
+
target_sizes=[image.size[::-1]]
|
373 |
+
)[0]
|
374 |
+
boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
|
375 |
+
return boxes, logits, phrases
|
376 |
+
|
377 |
+
|
378 |
+
def predict_yolo(model, image, box_threshold, imgsz, scale_img, iou_threshold=0.7):
|
379 |
+
""" Use huggingface model to replace the original model
|
380 |
+
"""
|
381 |
+
# model = model['model']
|
382 |
+
if scale_img:
|
383 |
+
result = model.predict(
|
384 |
+
source=image,
|
385 |
+
conf=box_threshold,
|
386 |
+
imgsz=imgsz,
|
387 |
+
iou=iou_threshold, # default 0.7
|
388 |
+
)
|
389 |
+
else:
|
390 |
+
result = model.predict(
|
391 |
+
source=image,
|
392 |
+
conf=box_threshold,
|
393 |
+
iou=iou_threshold, # default 0.7
|
394 |
+
)
|
395 |
+
boxes = result[0].boxes.xyxy#.tolist() # in pixel space
|
396 |
+
conf = result[0].boxes.conf
|
397 |
+
phrases = [str(i) for i in range(len(boxes))]
|
398 |
+
|
399 |
+
return boxes, conf, phrases
|
400 |
+
|
401 |
+
def int_box_area(box, w, h):
|
402 |
+
x1, y1, x2, y2 = box
|
403 |
+
int_box = [int(x1*w), int(y1*h), int(x2*w), int(y2*h)]
|
404 |
+
area = (int_box[2] - int_box[0]) * (int_box[3] - int_box[1])
|
405 |
+
return area
|
406 |
+
|
407 |
+
def get_som_labeled_img(image_source: Union[str, Image.Image], model=None, BOX_TRESHOLD=0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None, scale_img=False, imgsz=None, batch_size=64):
|
408 |
+
"""Process either an image path or Image object
|
409 |
+
|
410 |
+
Args:
|
411 |
+
image_source: Either a file path (str) or PIL Image object
|
412 |
+
...
|
413 |
+
"""
|
414 |
+
if isinstance(image_source, str):
|
415 |
+
image_source = Image.open(image_source).convert("RGB")
|
416 |
+
|
417 |
+
w, h = image_source.size
|
418 |
+
if not imgsz:
|
419 |
+
imgsz = (h, w)
|
420 |
+
# print('image size:', w, h)
|
421 |
+
xyxy, logits, phrases = predict_yolo(model=model, image=image_source, box_threshold=BOX_TRESHOLD, imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1)
|
422 |
+
xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
|
423 |
+
image_source = np.asarray(image_source)
|
424 |
+
phrases = [str(i) for i in range(len(phrases))]
|
425 |
+
|
426 |
+
# annotate the image with labels
|
427 |
+
if ocr_bbox:
|
428 |
+
ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
|
429 |
+
ocr_bbox=ocr_bbox.tolist()
|
430 |
+
else:
|
431 |
+
print('no ocr bbox!!!')
|
432 |
+
ocr_bbox = None
|
433 |
+
|
434 |
+
ocr_bbox_elem = [{'type': 'text', 'bbox':box, 'interactivity':False, 'content':txt,} for box, txt in zip(ocr_bbox, ocr_text) if int_box_area(box, w, h) > 0]
|
435 |
+
xyxy_elem = [{'type': 'icon', 'bbox':box, 'interactivity':True, 'content':None} for box in xyxy.tolist() if int_box_area(box, w, h) > 0]
|
436 |
+
filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem)
|
437 |
+
|
438 |
+
# sort the filtered_boxes so that the one with 'content': None is at the end, and get the index of the first 'content': None
|
439 |
+
filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None)
|
440 |
+
# get the index of the first 'content': None
|
441 |
+
starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1)
|
442 |
+
filtered_boxes = torch.tensor([box['bbox'] for box in filtered_boxes_elem])
|
443 |
+
print('len(filtered_boxes):', len(filtered_boxes), starting_idx)
|
444 |
+
|
445 |
+
# get parsed icon local semantics
|
446 |
+
time1 = time.time()
|
447 |
+
if use_local_semantics:
|
448 |
+
caption_model = caption_model_processor['model']
|
449 |
+
if 'phi3_v' in caption_model.config.model_type:
|
450 |
+
parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
|
451 |
+
else:
|
452 |
+
parsed_content_icon = get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=prompt,batch_size=batch_size)
|
453 |
+
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
|
454 |
+
icon_start = len(ocr_text)
|
455 |
+
parsed_content_icon_ls = []
|
456 |
+
# fill the filtered_boxes_elem None content with parsed_content_icon in order
|
457 |
+
for i, box in enumerate(filtered_boxes_elem):
|
458 |
+
if box['content'] is None:
|
459 |
+
box['content'] = parsed_content_icon.pop(0)
|
460 |
+
for i, txt in enumerate(parsed_content_icon):
|
461 |
+
parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
|
462 |
+
parsed_content_merged = ocr_text + parsed_content_icon_ls
|
463 |
+
else:
|
464 |
+
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
|
465 |
+
parsed_content_merged = ocr_text
|
466 |
+
print('time to get parsed content:', time.time()-time1)
|
467 |
+
|
468 |
+
filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")
|
469 |
+
|
470 |
+
phrases = [i for i in range(len(filtered_boxes))]
|
471 |
+
|
472 |
+
# draw boxes
|
473 |
+
if draw_bbox_config:
|
474 |
+
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
|
475 |
+
else:
|
476 |
+
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
|
477 |
+
|
478 |
+
pil_img = Image.fromarray(annotated_frame)
|
479 |
+
buffered = io.BytesIO()
|
480 |
+
pil_img.save(buffered, format="PNG")
|
481 |
+
encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
|
482 |
+
if output_coord_in_ratio:
|
483 |
+
label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
|
484 |
+
assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]
|
485 |
+
|
486 |
+
return encoded_image, label_coordinates, filtered_boxes_elem
|
487 |
+
|
488 |
+
|
489 |
+
def get_xywh(input):
|
490 |
+
x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
|
491 |
+
x, y, w, h = int(x), int(y), int(w), int(h)
|
492 |
+
return x, y, w, h
|
493 |
+
|
494 |
+
def get_xyxy(input):
|
495 |
+
x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
|
496 |
+
x, y, xp, yp = int(x), int(y), int(xp), int(yp)
|
497 |
+
return x, y, xp, yp
|
498 |
+
|
499 |
+
def get_xywh_yolo(input):
|
500 |
+
x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
|
501 |
+
x, y, w, h = int(x), int(y), int(w), int(h)
|
502 |
+
return x, y, w, h
|
503 |
+
|
504 |
+
def check_ocr_box(image_source: Union[str, Image.Image], display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False):
|
505 |
+
if isinstance(image_source, str):
|
506 |
+
image_source = Image.open(image_source)
|
507 |
+
if image_source.mode == 'RGBA':
|
508 |
+
# Convert RGBA to RGB to avoid alpha channel issues
|
509 |
+
image_source = image_source.convert('RGB')
|
510 |
+
image_np = np.array(image_source)
|
511 |
+
w, h = image_source.size
|
512 |
+
if use_paddleocr:
|
513 |
+
if easyocr_args is None:
|
514 |
+
text_threshold = 0.5
|
515 |
+
else:
|
516 |
+
text_threshold = easyocr_args['text_threshold']
|
517 |
+
result = paddle_ocr.ocr(image_np, cls=False)[0]
|
518 |
+
coord = [item[0] for item in result if item[1][1] > text_threshold]
|
519 |
+
text = [item[1][0] for item in result if item[1][1] > text_threshold]
|
520 |
+
else: # EasyOCR
|
521 |
+
if easyocr_args is None:
|
522 |
+
easyocr_args = {}
|
523 |
+
result = reader.readtext(image_np, **easyocr_args)
|
524 |
+
coord = [item[0] for item in result]
|
525 |
+
text = [item[1] for item in result]
|
526 |
+
if display_img:
|
527 |
+
opencv_img = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
528 |
+
bb = []
|
529 |
+
for item in coord:
|
530 |
+
x, y, a, b = get_xywh(item)
|
531 |
+
bb.append((x, y, a, b))
|
532 |
+
cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
|
533 |
+
# matplotlib expects RGB
|
534 |
+
plt.imshow(cv2.cvtColor(opencv_img, cv2.COLOR_BGR2RGB))
|
535 |
+
else:
|
536 |
+
if output_bb_format == 'xywh':
|
537 |
+
bb = [get_xywh(item) for item in coord]
|
538 |
+
elif output_bb_format == 'xyxy':
|
539 |
+
bb = [get_xyxy(item) for item in coord]
|
540 |
+
return (text, bb), goal_filtering
|
541 |
+
|
542 |
+
|