fuhgedaboudit / leaderboard_transformer.py
Chloe Anastasiades
Default value for cost divider line when no points have costs (#83)
c039999 unverified
import plotly.graph_objects as go
import numpy as np
import pandas as pd
import logging
from typing import Optional
import base64
import html
import aliases
logger = logging.getLogger(__name__)
INFORMAL_TO_FORMAL_NAME_MAP = {
# Short Names
"lit": "Literature Understanding",
"code": "Code & Execution",
"data": "Data Analysis",
"discovery": "End-to-End Discovery",
# Validation Names
"arxivdigestables_validation": "ArxivDIGESTables-Clean",
"ArxivDIGESTables_Clean_validation": "ArxivDIGESTables-Clean",
"sqa_dev": "ScholarQA-CS2",
"ScholarQA_CS2_validation": "ScholarQA-CS2",
"litqa2_validation": "LitQA2-FullText",
"LitQA2_FullText_validation": "LitQA2-FullText",
"paper_finder_validation": "PaperFindingBench",
"PaperFindingBench_validation": "PaperFindingBench",
"paper_finder_litqa2_validation": "LitQA2-FullText-Search",
"LitQA2_FullText_Search_validation": "LitQA2-FullText-Search",
"discoverybench_validation": "DiscoveryBench",
"DiscoveryBench_validation": "DiscoveryBench",
"core_bench_validation": "CORE-Bench-Hard",
"CORE_Bench_Hard_validation": "CORE-Bench-Hard",
"ds1000_validation": "DS-1000",
"DS_1000_validation": "DS-1000",
"e2e_discovery_validation": "E2E-Bench",
"E2E_Bench_validation": "E2E-Bench",
"e2e_discovery_hard_validation": "E2E-Bench-Hard",
"E2E_Bench_Hard_validation": "E2E-Bench-Hard",
"super_validation": "SUPER-Expert",
"SUPER_Expert_validation": "SUPER-Expert",
# Test Names
"paper_finder_test": "PaperFindingBench",
"PaperFindingBench_test": "PaperFindingBench",
"paper_finder_litqa2_test": "LitQA2-FullText-Search",
"LitQA2_FullText_Search_test": "LitQA2-FullText-Search",
"sqa_test": "ScholarQA-CS2",
"ScholarQA_CS2_test": "ScholarQA-CS2",
"arxivdigestables_test": "ArxivDIGESTables-Clean",
"ArxivDIGESTables_Clean_test": "ArxivDIGESTables-Clean",
"litqa2_test": "LitQA2-FullText",
"LitQA2_FullText_test": "LitQA2-FullText",
"discoverybench_test": "DiscoveryBench",
"DiscoveryBench_test": "DiscoveryBench",
"core_bench_test": "CORE-Bench-Hard",
"CORE_Bench_Hard_test": "CORE-Bench-Hard",
"ds1000_test": "DS-1000",
"DS_1000_test": "DS-1000",
"e2e_discovery_test": "E2E-Bench",
"E2E_Bench_test": "E2E-Bench",
"e2e_discovery_hard_test": "E2E-Bench-Hard",
"E2E_Bench_Hard_test": "E2E-Bench-Hard",
"super_test": "SUPER-Expert",
"SUPER_Expert_test": "SUPER-Expert",
}
ORDER_MAP = {
'Overall_keys': [
'lit',
'code',
'data',
'discovery',
],
'Literature Understanding': [
'PaperFindingBench',
'LitQA2-FullText-Search',
'ScholarQA-CS2',
'LitQA2-FullText',
'ArxivDIGESTables-Clean'
],
'Code & Execution': [
'SUPER-Expert',
'CORE-Bench-Hard',
'DS-1000'
],
# Add other keys for 'Data Analysis' and 'Discovery' when/if we add more benchmarks in those categories
}
def _safe_round(value, digits=3):
"""Rounds a number if it's a valid float/int, otherwise returns it as is."""
return round(value, digits) if isinstance(value, (float, int)) and pd.notna(value) else value
def _pretty_column_name(raw_col: str) -> str:
"""
Takes a raw column name from the DataFrame and returns a "pretty" version.
Handles three cases:
1. Fixed names (e.g., 'User/organization' -> 'Submitter').
2. Dynamic names (e.g., 'ds1000_validation score' -> 'DS1000 Validation Score').
3. Fallback for any other names.
"""
# Case 1: Handle fixed, special-case mappings first.
fixed_mappings = {
'id': 'id',
'Agent': 'Agent',
'Agent description': 'Agent Description',
'User/organization': 'Submitter',
'Submission date': 'Date',
'Overall': 'Overall Score',
'Overall cost': 'Overall Cost',
'Logs': 'Logs',
'Openness': 'Openness',
'Agent tooling': 'Agent Tooling',
'LLM base': 'LLM Base',
'Source': 'Source',
}
if raw_col in fixed_mappings:
return fixed_mappings[raw_col]
# Case 2: Handle dynamic names by finding the longest matching base name.
# We sort by length (desc) to match 'core_bench_validation' before 'core_bench'.
sorted_base_names = sorted(INFORMAL_TO_FORMAL_NAME_MAP.keys(), key=len, reverse=True)
for base_name in sorted_base_names:
if raw_col.startswith(base_name):
formal_name = INFORMAL_TO_FORMAL_NAME_MAP[base_name]
# Get the metric part (e.g., ' score' or ' cost 95% CI')
metric_part = raw_col[len(base_name):].strip()
# Capitalize the metric part correctly (e.g., 'score' -> 'Score')
pretty_metric = metric_part.capitalize()
return f"{formal_name} {pretty_metric}"
# Case 3: If no specific rule applies, just make it title case.
return raw_col.title()
def create_pretty_tag_map(raw_tag_map: dict, name_map: dict) -> dict:
"""
Converts a tag map with raw names into a tag map with pretty, formal names,
applying a specific, non-alphabetic sort order to the values.
"""
pretty_map = {}
# Helper to get pretty name with a fallback
def get_pretty(raw_name):
return name_map.get(raw_name, raw_name.replace("_", " "))
key_order = ORDER_MAP.get('Overall_keys', [])
sorted_keys = sorted(raw_tag_map.keys(), key=lambda x: key_order.index(x) if x in key_order else len(key_order))
for raw_key in sorted_keys:
raw_value_list = raw_tag_map[raw_key]
pretty_key = get_pretty(raw_key)
pretty_value_list = [get_pretty(raw_val) for raw_val in raw_value_list]
# Get the unique values first
unique_values = list(set(pretty_value_list))
# Get the custom order for the current key. Fall back to an empty list.
custom_order = ORDER_MAP.get(pretty_key, [])
def sort_key(value):
if value in custom_order:
return 0, custom_order.index(value)
else:
return 1, value
pretty_map[pretty_key] = sorted(unique_values, key=sort_key)
print(f"Created pretty tag map: {pretty_map}")
return pretty_map
def transform_raw_dataframe(raw_df: pd.DataFrame) -> pd.DataFrame:
"""
Transforms a raw leaderboard DataFrame into a presentation-ready format.
This function performs two main actions:
1. Rounds all numeric metric values (columns containing 'score' or 'cost').
2. Renames all columns to a "pretty", human-readable format.
Args:
raw_df (pd.DataFrame): The DataFrame with raw data and column names
like 'agent_name', 'overall/score', 'tag/code/cost'.
Returns:
pd.DataFrame: A new DataFrame ready for display.
"""
if not isinstance(raw_df, pd.DataFrame):
raise TypeError("Input 'raw_df' must be a pandas DataFrame.")
df = raw_df.copy()
# Create the mapping for pretty column names
pretty_cols_map = {col: _pretty_column_name(col) for col in df.columns}
# Rename the columns and return the new DataFrame
transformed_df = df.rename(columns=pretty_cols_map)
# Apply safe rounding to all metric columns
for col in transformed_df.columns:
if 'Score' in col or 'Cost' in col:
transformed_df[col] = transformed_df[col].apply(_safe_round)
logger.info("Raw DataFrame transformed: numbers rounded and columns renamed.")
return transformed_df
class DataTransformer:
"""
Visualizes a pre-processed leaderboard DataFrame.
This class takes a "pretty" DataFrame and a tag map, and provides
methods to view filtered versions of the data and generate plots.
"""
def __init__(self, dataframe: pd.DataFrame, tag_map: dict[str, list[str]]):
"""
Initializes the viewer.
Args:
dataframe (pd.DataFrame): The presentation-ready leaderboard data.
tag_map (dict): A map of formal tag names to formal task names.
"""
if not isinstance(dataframe, pd.DataFrame):
raise TypeError("Input 'dataframe' must be a pandas DataFrame.")
if not isinstance(tag_map, dict):
raise TypeError("Input 'tag_map' must be a dictionary.")
self.data = dataframe
self.tag_map = tag_map
logger.info(f"DataTransformer initialized with a DataFrame of shape {self.data.shape}.")
def view(
self,
tag: Optional[str] = "Overall", # Default to "Overall" for clarity
use_plotly: bool = False,
) -> tuple[pd.DataFrame, dict[str, go.Figure]]:
"""
Generates a filtered view of the DataFrame and a corresponding scatter plot.
"""
if self.data.empty:
logger.warning("No data available to view.")
return self.data, {}
# --- 1. Determine Primary and Group Metrics Based on the Tag ---
if tag is None or tag == "Overall":
primary_metric = "Overall"
group_metrics = list(self.tag_map.keys())
else:
primary_metric = tag
# For a specific tag, the group is its list of sub-tasks.
group_metrics = self.tag_map.get(tag, [])
# --- 2. Sort the DataFrame by the Primary Score ---
primary_score_col = f"{primary_metric} Score"
df_sorted = self.data
if primary_score_col in self.data.columns:
df_sorted = self.data.sort_values(primary_score_col, ascending=False, na_position='last')
df_view = df_sorted.copy()
# --- 3. Add Columns for Agent Openness and Tooling ---
base_cols = ["id","Agent","Submitter","LLM Base","Source"]
new_cols = ["Openness", "Agent Tooling"]
ending_cols = ["Date", "Logs"]
metrics_to_display = [primary_score_col, f"{primary_metric} Cost"]
for item in group_metrics:
metrics_to_display.append(f"{item} Score")
metrics_to_display.append(f"{item} Cost")
final_cols_ordered = new_cols + base_cols + list(dict.fromkeys(metrics_to_display)) + ending_cols
for col in final_cols_ordered:
if col not in df_view.columns:
df_view[col] = pd.NA
# The final selection will now use the new column structure
df_view = df_view[final_cols_ordered].reset_index(drop=True)
cols = len(final_cols_ordered)
# Calculated and add "Categories Attempted" column
if primary_metric == "Overall":
def calculate_attempted(row):
main_categories = ['Literature Understanding', 'Code & Execution', 'Data Analysis', 'End-to-End Discovery']
count = sum(1 for category in main_categories if row.get(f"{category} Score") != 0.0)
return f"{count}/4"
# Apply the function row-wise to create the new column
attempted_column = df_view.apply(calculate_attempted, axis=1)
# Insert the new column at a nice position (e.g., after "Date")
df_view.insert((cols - 2), "Categories Attempted", attempted_column)
else:
total_benchmarks = len(group_metrics)
def calculate_benchmarks_attempted(row):
# Count how many benchmarks in this category have COST data reported
count = sum(1 for benchmark in group_metrics if pd.notna(row.get(f"{benchmark} Score")))
return f"{count}/{total_benchmarks}"
# Insert the new column, for example, after "Date"
df_view.insert((cols - 2), "Benchmarks Attempted", df_view.apply(calculate_benchmarks_attempted, axis=1))
# --- 4. Generate the Scatter Plot for the Primary Metric ---
plots: dict[str, go.Figure] = {}
if use_plotly:
primary_cost_col = f"{primary_metric} Cost"
# Check if the primary score and cost columns exist in the FINAL view
if primary_score_col in df_view.columns and primary_cost_col in df_view.columns:
fig = _plot_scatter_plotly(
data=df_view,
x=primary_cost_col,
y=primary_score_col,
agent_col="Agent",
name=primary_metric
)
# Use a consistent key for easy retrieval later
plots['scatter_plot'] = fig
else:
logger.warning(
f"Skipping plot for '{primary_metric}': score column '{primary_score_col}' "
f"or cost column '{primary_cost_col}' not found."
)
# Add an empty figure to avoid downstream errors
plots['scatter_plot'] = go.Figure()
return df_view, plots
DEFAULT_Y_COLUMN = "Overall Score"
DUMMY_X_VALUE_FOR_MISSING_COSTS = 0
def _plot_scatter_plotly(
data: pd.DataFrame,
x: Optional[str],
y: str,
agent_col: str = 'Agent',
name: Optional[str] = None
) -> go.Figure:
# --- Section 1: Define Mappings ---
# These include aliases for openness categories,
# so multiple names might correspond to the same color.
color_map = {
aliases.CANONICAL_OPENNESS_OPEN_SOURCE_OPEN_WEIGHTS: "deeppink",
aliases.CANONICAL_OPENNESS_OPEN_SOURCE_CLOSED_WEIGHTS: "coral",
aliases.CANONICAL_OPENNESS_CLOSED_API_AVAILABLE: "yellow",
aliases.CANONICAL_OPENNESS_CLOSED_UI_ONLY: "white",
}
for canonical_openness, openness_aliases in aliases.OPENNESS_ALIASES.items():
for openness_alias in openness_aliases:
color_map[openness_alias] = color_map[canonical_openness]
# Only keep one name per color for the legend.
colors_for_legend = set(aliases.OPENNESS_ALIASES.keys())
category_order = list(color_map.keys())
# These include aliases for tool usage categories,
# so multiple names might correspond to the same shape.
shape_map = {
aliases.CANONICAL_TOOL_USAGE_STANDARD: "star",
aliases.CANONICAL_TOOL_USAGE_CUSTOM_INTERFACE: "star-diamond",
aliases.CANONICAL_TOOL_USAGE_FULLY_CUSTOM: "star-triangle-up",
}
for canonical_tool_usage, tool_usages_aliases in aliases.TOOL_USAGE_ALIASES.items():
for tool_usage_alias in tool_usages_aliases:
shape_map[tool_usage_alias] = shape_map[canonical_tool_usage]
default_shape = 'square'
# Only keep one name per shape for the legend.
shapes_for_legend = set(aliases.TOOL_USAGE_ALIASES.keys())
x_col_to_use = x
y_col_to_use = y
llm_base = data["LLM Base"] if "LLM Base" in data.columns else "LLM Base"
# --- Section 2: Data Preparation---
required_cols = [y_col_to_use, agent_col, "Openness", "Agent Tooling"]
if not all(col in data.columns for col in required_cols):
logger.error(f"Missing one or more required columns for plotting: {required_cols}")
return go.Figure()
data_plot = data.copy()
data_plot[y_col_to_use] = pd.to_numeric(data_plot[y_col_to_use], errors='coerce')
x_axis_label = f"Average (mean) cost per problem (USD)" if x else "Cost (Data N/A)"
max_reported_cost = 0
divider_line_x = 0
if x and x in data_plot.columns:
data_plot[x_col_to_use] = pd.to_numeric(data_plot[x_col_to_use], errors='coerce')
# --- Separate data into two groups ---
valid_cost_data = data_plot[data_plot[x_col_to_use].notna()].copy()
missing_cost_data = data_plot[data_plot[x_col_to_use].isna()].copy()
# Hardcode for all missing costs for now, but ideally try to fallback
# to the max cost in the same figure in another split, if that one has data...
max_reported_cost = valid_cost_data[x_col_to_use].max() if not valid_cost_data.empty else 10
# ---Calculate where to place the missing data and the divider line ---
divider_line_x = max_reported_cost + (max_reported_cost/10)
new_x_for_missing = max_reported_cost + (max_reported_cost/5)
if not missing_cost_data.empty:
missing_cost_data[x_col_to_use] = new_x_for_missing
if not valid_cost_data.empty:
if not missing_cost_data.empty:
# --- Combine the two groups back together ---
data_plot = pd.concat([valid_cost_data, missing_cost_data])
else:
data_plot = valid_cost_data # No missing data, just use the valid set
else:
# ---Handle the case where ALL costs are missing ---
if not missing_cost_data.empty:
data_plot = missing_cost_data
else:
data_plot = pd.DataFrame()
else:
# Handle case where x column is not provided at all
data_plot[x_col_to_use] = 0
# Clean data based on all necessary columns
data_plot.dropna(subset=[y_col_to_use, x_col_to_use, "Openness", "Agent Tooling"], inplace=True)
# --- Section 3: Initialize Figure ---
fig = go.Figure()
if data_plot.empty:
logger.warning(f"No valid data to plot after cleaning.")
return fig
# --- Section 4: Calculate and Draw Pareto Frontier ---
if x_col_to_use and y_col_to_use:
sorted_data = data_plot.sort_values(by=[x_col_to_use, y_col_to_use], ascending=[True, False])
frontier_points = []
max_score_so_far = float('-inf')
for _, row in sorted_data.iterrows():
score = row[y_col_to_use]
if score >= max_score_so_far:
frontier_points.append({'x': row[x_col_to_use], 'y': score})
max_score_so_far = score
if frontier_points:
frontier_df = pd.DataFrame(frontier_points)
fig.add_trace(go.Scatter(
x=frontier_df['x'],
y=frontier_df['y'],
mode='lines',
name='Efficiency Frontier',
showlegend=False,
line=dict(color='#0FCB8C', width=2, dash='dash'),
hoverinfo='skip'
))
# --- Section 5: Prepare for Marker Plotting ---
def format_hover_text(row, agent_col, x_axis_label, x_col, y_col):
"""
Builds the complete HTML string for the plot's hover tooltip.
Formats the 'LLM Base' column as a bulleted list if multiple.
"""
h_pad = " "
parts = ["<br>"]
parts.append(f"{h_pad}<b>{row[agent_col]}</b>{h_pad}<br>")
parts.append(f"{h_pad}Score: <b>{row[y_col]:.3f}</b>{h_pad}<br>")
parts.append(f"{h_pad}{x_axis_label}: <b>${row[x_col]:.2f}</b>{h_pad}<br>")
parts.append(f"{h_pad}Openness: <b>{row['Openness']}</b>{h_pad}<br>")
parts.append(f"{h_pad}Tooling: <b>{row['Agent Tooling']}</b>{h_pad}")
# Add extra vertical space (line spacing) before the next section
parts.append("<br>")
# Clean and format LLM Base column
llm_base_value = row['LLM Base']
llm_base_value = clean_llm_base_list(llm_base_value)
if isinstance(llm_base_value, list) and llm_base_value:
parts.append(f"{h_pad}LLM Base:{h_pad}<br>")
# Create a list of padded bullet points
list_items = [f"{h_pad} • <b>{item}</b>{h_pad}" for item in llm_base_value]
# Join them with line breaks
parts.append('<br>'.join(list_items))
else:
# Handle the non-list case with padding
parts.append(f"{h_pad}LLM Base: <b>{llm_base_value}</b>{h_pad}")
# Add a final line break for bottom "padding"
parts.append("<br>")
# Join all the parts together into the final HTML string
return ''.join(parts)
# Pre-generate hover text and shapes for each point
data_plot['hover_text'] = data_plot.apply(
lambda row: format_hover_text(
row,
agent_col=agent_col,
x_axis_label=x_axis_label,
x_col=x_col_to_use,
y_col=y_col_to_use
),
axis=1
)
data_plot['shape_symbol'] = data_plot['Agent Tooling'].map(shape_map).fillna(default_shape)
# --- Section 6: Plot Markers by "Openness" Category ---
for category in category_order:
group = data_plot[data_plot['Openness'] == category]
if group.empty:
continue
fig.add_trace(go.Scatter(
x=group[x_col_to_use],
y=group[y_col_to_use],
mode='markers',
name=category,
showlegend=False,
text=group['hover_text'],
hoverinfo='text',
marker=dict(
color=color_map.get(category, 'black'),
symbol=group['shape_symbol'],
size=15,
opacity=0.8,
line=dict(width=1, color='deeppink')
)
))
# --- Section 8: Configure Layout ---
xaxis_config = dict(title=x_axis_label, rangemode="tozero")
if divider_line_x > 0:
fig.add_vline(
x=divider_line_x,
line_width=2,
line_dash="dash",
line_color="grey",
annotation_text="Missing Cost Data",
annotation_position="top right"
)
# ---Adjust x-axis range to make room for the new points ---
xaxis_config['range'] = [-0.2, (max_reported_cost + (max_reported_cost / 4))]
fig.update_layout(
template="plotly_white",
title=f"AstaBench {name} Leaderboard",
xaxis=xaxis_config, # Use the updated config
yaxis=dict(title="Average (mean) score", range=[-0.2, None]),
legend=dict(
bgcolor='#FAF2E9',
),
height=572,
hoverlabel=dict(
bgcolor="#105257",
font_size=12,
font_family="Manrope",
font_color="#d3dedc",
),
)
# fig.add_layout_image(
# dict(
# source=logo_data_uri,
# xref="x domain", yref="y domain",
# x=1.1, y=1.1,
# sizex=0.2, sizey=0.2,
# xanchor="left",
# yanchor="bottom",
# layer="above",
# ),
# )
return fig
def format_cost_column(df: pd.DataFrame, cost_col_name: str) -> pd.DataFrame:
"""
Applies custom formatting to a cost column based on its corresponding score column.
- If cost is not null, it remains unchanged.
- If cost is null but score is not, it becomes "Missing Cost".
- If both cost and score are null, it becomes "Not Attempted".
Args:
df: The DataFrame to modify.
cost_col_name: The name of the cost column to format (e.g., "Overall Cost").
Returns:
The DataFrame with the formatted cost column.
"""
# Find the corresponding score column by replacing "Cost" with "Score"
score_col_name = cost_col_name.replace("Cost", "Score")
# Ensure the score column actually exists to avoid errors
if score_col_name not in df.columns:
return df # Return the DataFrame unmodified if there's no matching score
def apply_formatting_logic(row):
cost_value = row[cost_col_name]
score_value = row[score_col_name]
status_color = "#ec4899"
if pd.notna(cost_value) and isinstance(cost_value, (int, float)):
return f"${cost_value:.2f}"
elif pd.notna(score_value):
return f'<span style="color: {status_color};">Missing</span>' # Score exists, but cost is missing
else:
return f'<span style="color: {status_color};">Not Submitted</span>' # Neither score nor cost exists
# Apply the logic to the specified cost column and update the DataFrame
df[cost_col_name] = df.apply(apply_formatting_logic, axis=1)
return df
def format_score_column(df: pd.DataFrame, score_col_name: str) -> pd.DataFrame:
"""
Applies custom formatting to a score column for display.
- If a score is 0 or NaN, it's displayed as a colored "0".
- Other scores are formatted to two decimal places.
"""
status_color = "#ec4899" # The same color as your other status text
# First, fill any NaN values with 0 so we only have one case to handle.
# We must use reassignment to avoid the SettingWithCopyWarning.
df[score_col_name] = df[score_col_name].fillna(0)
def apply_formatting(score_value):
# Now, we just check if the value is 0.
if score_value == 0:
return f'<span style="color: {status_color};">0.0</span>'
# For all other numbers, format them for consistency.
if isinstance(score_value, (int, float)):
return f"{score_value:.3f}"
# Fallback for any unexpected non-numeric data
return score_value
# Apply the formatting and return the updated DataFrame
return df.assign(**{score_col_name: df[score_col_name].apply(apply_formatting)})
def get_pareto_df(data):
cost_cols = [c for c in data.columns if 'Cost' in c]
score_cols = [c for c in data.columns if 'Score' in c]
if not cost_cols or not score_cols:
return pd.DataFrame()
x_col, y_col = cost_cols[0], score_cols[0]
frontier_data = data.dropna(subset=[x_col, y_col]).copy()
frontier_data[y_col] = pd.to_numeric(frontier_data[y_col], errors='coerce')
frontier_data[x_col] = pd.to_numeric(frontier_data[x_col], errors='coerce')
frontier_data.dropna(subset=[x_col, y_col], inplace=True)
if frontier_data.empty:
return pd.DataFrame()
frontier_data = frontier_data.sort_values(by=[x_col, y_col], ascending=[True, False])
pareto_points = []
max_score_at_cost = -np.inf
for _, row in frontier_data.iterrows():
if row[y_col] >= max_score_at_cost:
pareto_points.append(row)
max_score_at_cost = row[y_col]
return pd.DataFrame(pareto_points)
def svg_to_data_uri(path: str) -> str:
"""Reads an SVG file and encodes it as a Data URI for Plotly."""
try:
with open(path, "rb") as f:
encoded_string = base64.b64encode(f.read()).decode()
return f"data:image/svg+xml;base64,{encoded_string}"
except FileNotFoundError:
logger.warning(f"SVG file not found at: {path}")
return None
def clean_llm_base_list(model_list):
"""
Cleans a list of model strings by keeping only the text after the last '/'.
For example: "models/gemini-2.5-flash-preview-05-20" becomes "gemini-2.5-flash-preview-05-20".
"""
# Return the original value if it's not a list, to avoid errors.
if not isinstance(model_list, list):
return model_list
# Use a list comprehension for a clean and efficient transformation.
return [str(item).split('/')[-1] for item in model_list]