Spaces:
Paused
Paused
Chloe Anastasiades
commited on
Default value for cost divider line when no points have costs (#83)
Browse files- leaderboard_transformer.py +10 -7
leaderboard_transformer.py
CHANGED
|
@@ -383,14 +383,18 @@ def _plot_scatter_plotly(
|
|
| 383 |
valid_cost_data = data_plot[data_plot[x_col_to_use].notna()].copy()
|
| 384 |
missing_cost_data = data_plot[data_plot[x_col_to_use].isna()].copy()
|
| 385 |
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
|
|
|
| 392 |
if not missing_cost_data.empty:
|
| 393 |
-
missing_cost_data[x_col_to_use] = new_x_for_missing
|
| 394 |
# --- Combine the two groups back together ---
|
| 395 |
data_plot = pd.concat([valid_cost_data, missing_cost_data])
|
| 396 |
else:
|
|
@@ -398,7 +402,6 @@ def _plot_scatter_plotly(
|
|
| 398 |
else:
|
| 399 |
# ---Handle the case where ALL costs are missing ---
|
| 400 |
if not missing_cost_data.empty:
|
| 401 |
-
missing_cost_data[x_col_to_use] = 0
|
| 402 |
data_plot = missing_cost_data
|
| 403 |
else:
|
| 404 |
data_plot = pd.DataFrame()
|
|
|
|
| 383 |
valid_cost_data = data_plot[data_plot[x_col_to_use].notna()].copy()
|
| 384 |
missing_cost_data = data_plot[data_plot[x_col_to_use].isna()].copy()
|
| 385 |
|
| 386 |
+
# Hardcode for all missing costs for now, but ideally try to fallback
|
| 387 |
+
# to the max cost in the same figure in another split, if that one has data...
|
| 388 |
+
max_reported_cost = valid_cost_data[x_col_to_use].max() if not valid_cost_data.empty else 10
|
| 389 |
+
|
| 390 |
+
# ---Calculate where to place the missing data and the divider line ---
|
| 391 |
+
divider_line_x = max_reported_cost + (max_reported_cost/10)
|
| 392 |
+
new_x_for_missing = max_reported_cost + (max_reported_cost/5)
|
| 393 |
+
if not missing_cost_data.empty:
|
| 394 |
+
missing_cost_data[x_col_to_use] = new_x_for_missing
|
| 395 |
|
| 396 |
+
if not valid_cost_data.empty:
|
| 397 |
if not missing_cost_data.empty:
|
|
|
|
| 398 |
# --- Combine the two groups back together ---
|
| 399 |
data_plot = pd.concat([valid_cost_data, missing_cost_data])
|
| 400 |
else:
|
|
|
|
| 402 |
else:
|
| 403 |
# ---Handle the case where ALL costs are missing ---
|
| 404 |
if not missing_cost_data.empty:
|
|
|
|
| 405 |
data_plot = missing_cost_data
|
| 406 |
else:
|
| 407 |
data_plot = pd.DataFrame()
|