Spaces:
Sleeping
Sleeping
File size: 1,434 Bytes
664dcc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
Usage 1. Clone the Repository Start by cloning the repository to your local machine: bash Copy Edit git clone https://github.com/your-username/your-repository-name.git 2. Install Dependencies Navigate to the project folder and install the necessary dependencies using the requirements.txt: bash Copy Edit cd your-repository-name pip install -r requirements.txt 3. Setup API Key You will need an Alpha Vantage API key to fetch stock data. Sign up for a free API key here. Once you have the key, replace the placeholder in the TESTING.py script: python Copy Edit ALPHA_VANTAGE_API_KEY = 'YOUR_API_KEY' 4. Run the Stock Prediction Run the script with your desired stock ticker symbol. The stock ticker should be in the format of TICKER.SYMBOL (e.g., AAPL for Apple, MSFT for Microsoft): bash Copy Edit python TESTING.py You will be prompted to enter the stock ticker symbol in the terminal: java Copy Edit Enter the stock ticker symbol (e.g., TATAMOTORS.NS or TSLA): MSFT 5. View Results The model will: Output performance evaluation metrics (MAE, MSE, RMSE, R² Score). Display a plot comparing actual vs predicted stock prices. Predict the next hour’s stock price based on the last available data. Example Output: yaml Copy Edit 📏 MAE: 3.5777, MSE: 18.7211, RMSE: 4.3268, R² Score: 0.9984 📈 Predicted next hour price: ₹425.67 The prediction results will be displayed graphically and saved as prediction_plot.pdf. |