Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- USAGE.TXT +55 -0
- requirements.txt +7 -0
- stock_price_model.h5 +3 -0
USAGE.TXT
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Usage
|
3 |
+
1. Clone the Repository
|
4 |
+
Start by cloning the repository to your local machine:
|
5 |
+
|
6 |
+
bash
|
7 |
+
Copy
|
8 |
+
Edit
|
9 |
+
git clone https://github.com/your-username/your-repository-name.git
|
10 |
+
2. Install Dependencies
|
11 |
+
Navigate to the project folder and install the necessary dependencies using the requirements.txt:
|
12 |
+
|
13 |
+
bash
|
14 |
+
Copy
|
15 |
+
Edit
|
16 |
+
cd your-repository-name
|
17 |
+
pip install -r requirements.txt
|
18 |
+
3. Setup API Key
|
19 |
+
You will need an Alpha Vantage API key to fetch stock data. Sign up for a free API key here.
|
20 |
+
|
21 |
+
Once you have the key, replace the placeholder in the TESTING.py script:
|
22 |
+
|
23 |
+
python
|
24 |
+
Copy
|
25 |
+
Edit
|
26 |
+
ALPHA_VANTAGE_API_KEY = 'YOUR_API_KEY'
|
27 |
+
4. Run the Stock Prediction
|
28 |
+
Run the script with your desired stock ticker symbol. The stock ticker should be in the format of TICKER.SYMBOL (e.g., AAPL for Apple, MSFT for Microsoft):
|
29 |
+
|
30 |
+
bash
|
31 |
+
Copy
|
32 |
+
Edit
|
33 |
+
python TESTING.py
|
34 |
+
You will be prompted to enter the stock ticker symbol in the terminal:
|
35 |
+
|
36 |
+
java
|
37 |
+
Copy
|
38 |
+
Edit
|
39 |
+
Enter the stock ticker symbol (e.g., TATAMOTORS.NS or TSLA): MSFT
|
40 |
+
5. View Results
|
41 |
+
The model will:
|
42 |
+
|
43 |
+
Output performance evaluation metrics (MAE, MSE, RMSE, R² Score).
|
44 |
+
|
45 |
+
Display a plot comparing actual vs predicted stock prices.
|
46 |
+
|
47 |
+
Predict the next hour’s stock price based on the last available data.
|
48 |
+
|
49 |
+
Example Output:
|
50 |
+
yaml
|
51 |
+
Copy
|
52 |
+
Edit
|
53 |
+
📏 MAE: 3.5777, MSE: 18.7211, RMSE: 4.3268, R² Score: 0.9984
|
54 |
+
📈 Predicted next hour price: ₹425.67
|
55 |
+
The prediction results will be displayed graphically and saved as prediction_plot.pdf.
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
matplotlib
|
4 |
+
seaborn
|
5 |
+
scikit-learn
|
6 |
+
tensorflow
|
7 |
+
alpha_vantage
|
stock_price_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:830399dbcee37ad4dc36188ce1d785f1286561e8beca6ab1e83c402779f2ead8
|
3 |
+
size 427312
|