Update app.py
#1
by
jianvini2
- opened
app.py
CHANGED
|
@@ -1,7 +1,168 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
app = FastAPI()
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import io
|
| 3 |
+
import re
|
| 4 |
+
import yaml
|
| 5 |
+
from typing import List, Optional
|
| 6 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, Query
|
| 7 |
+
from fastapi.responses import JSONResponse
|
| 8 |
+
import uvicorn
|
| 9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
|
| 11 |
app = FastAPI()
|
| 12 |
|
| 13 |
+
# Carregar configuração
|
| 14 |
+
with open("column_config.yaml") as f:
|
| 15 |
+
COLUMN_CONFIG = yaml.safe_load(f)
|
| 16 |
+
|
| 17 |
+
# Função para detectar tipos de colunas
|
| 18 |
+
def detect_column_type(dtype):
|
| 19 |
+
if pd.api.types.is_datetime64_any_dtype(dtype):
|
| 20 |
+
return "datetime"
|
| 21 |
+
elif pd.api.types.is_numeric_dtype(dtype):
|
| 22 |
+
return "number"
|
| 23 |
+
return "text"
|
| 24 |
+
|
| 25 |
+
# Normalização de colunas
|
| 26 |
+
def normalize_column_names(column_names: List[str]) -> List[str]:
|
| 27 |
+
normalized = []
|
| 28 |
+
for raw_col in column_names:
|
| 29 |
+
sanitized = re.sub(r'[\W]+', '_', raw_col.strip()).lower().strip('_')
|
| 30 |
+
for config_col, config in COLUMN_CONFIG['columns'].items():
|
| 31 |
+
synonyms = [
|
| 32 |
+
re.sub(r'[\W]+', '_', s.strip()).lower().strip('_')
|
| 33 |
+
for s in [config_col] + config.get('synonyms', [])
|
| 34 |
+
]
|
| 35 |
+
if sanitized in synonyms:
|
| 36 |
+
normalized.append(config_col)
|
| 37 |
+
break
|
| 38 |
+
else:
|
| 39 |
+
normalized.append(sanitized)
|
| 40 |
+
return normalized
|
| 41 |
+
|
| 42 |
+
# Limpeza de dados aprimorada
|
| 43 |
+
def clean_data(df: pd.DataFrame) -> pd.DataFrame:
|
| 44 |
+
df.columns = normalize_column_names(df.columns)
|
| 45 |
+
|
| 46 |
+
# Tratamento de valores ausentes
|
| 47 |
+
for col in df.columns:
|
| 48 |
+
if col in COLUMN_CONFIG['columns']:
|
| 49 |
+
col_type = COLUMN_CONFIG['columns'][col].get('type', 'text')
|
| 50 |
+
if col_type == 'datetime':
|
| 51 |
+
df[col] = pd.to_datetime(df[col], errors='coerce')
|
| 52 |
+
elif col_type == 'numeric':
|
| 53 |
+
df[col] = pd.to_numeric(df[col], errors='coerce')
|
| 54 |
+
elif col_type == 'categorical':
|
| 55 |
+
allowed = COLUMN_CONFIG['columns'][col].get('allowed', [])
|
| 56 |
+
df[col] = df[col].where(df[col].isin(allowed), None)
|
| 57 |
+
|
| 58 |
+
# Tratamento de formatos inconsistentes
|
| 59 |
+
for col in df.columns:
|
| 60 |
+
if col in COLUMN_CONFIG['columns']:
|
| 61 |
+
col_type = COLUMN_CONFIG['columns'][col].get('type', 'text')
|
| 62 |
+
if col_type == 'datetime':
|
| 63 |
+
fmt = COLUMN_CONFIG['columns'][col].get('format')
|
| 64 |
+
df[col] = pd.to_datetime(df[col], errors='coerce', format=fmt)
|
| 65 |
+
df[col] = df[col].dt.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 66 |
+
elif col_type == 'numeric':
|
| 67 |
+
df[col] = pd.to_numeric(df[col], errors='coerce').astype(float)
|
| 68 |
+
elif col_type == 'categorical':
|
| 69 |
+
allowed = COLUMN_CONFIG['columns'][col].get('allowed', [])
|
| 70 |
+
df[col] = df[col].where(df[col].isin(allowed))
|
| 71 |
+
|
| 72 |
+
# Tratamento de outliers
|
| 73 |
+
for col in df.columns:
|
| 74 |
+
if col in COLUMN_CONFIG['columns']:
|
| 75 |
+
col_type = COLUMN_CONFIG['columns'][col].get('type', 'text')
|
| 76 |
+
if col_type == 'numeric':
|
| 77 |
+
q1 = df[col].quantile(0.25)
|
| 78 |
+
q3 = df[col].quantile(0.75)
|
| 79 |
+
iqr = q3 - q1
|
| 80 |
+
lower_bound = q1 - 1.5 * iqr
|
| 81 |
+
upper_bound = q3 + 1.5 * iqr
|
| 82 |
+
df[col] = df[col].clip(lower=lower_bound, upper=upper_bound)
|
| 83 |
+
|
| 84 |
+
# Tratamento de registros duplicados
|
| 85 |
+
df.drop_duplicates(inplace=True)
|
| 86 |
+
|
| 87 |
+
# Tratamento de tipos de dados mistos
|
| 88 |
+
for col in df.columns:
|
| 89 |
+
if col in COLUMN_CONFIG['columns']:
|
| 90 |
+
col_type = COLUMN_CONFIG['columns'][col].get('type', 'text')
|
| 91 |
+
if col_type == 'numeric':
|
| 92 |
+
df[col] = pd.to_numeric(df[col], errors='coerce')
|
| 93 |
+
elif col_type == 'datetime':
|
| 94 |
+
df[col] = pd.to_datetime(df[col], errors='coerce')
|
| 95 |
+
|
| 96 |
+
# Tratamento de dados ruídos
|
| 97 |
+
for col in df.columns:
|
| 98 |
+
if col in COLUMN_CONFIG['columns']:
|
| 99 |
+
col_type = COLUMN_CONFIG['columns'][col].get('type', 'text')
|
| 100 |
+
if col_type == 'text':
|
| 101 |
+
df[col] = df[col].str.strip().str.lower()
|
| 102 |
+
|
| 103 |
+
return df.replace({pd.NA: None})
|
| 104 |
+
|
| 105 |
+
# Função para processar o arquivo e retornar dados limpos
|
| 106 |
+
def process_file(file: UploadFile, sheet_name: Optional[str] = None) -> pd.DataFrame:
|
| 107 |
+
try:
|
| 108 |
+
content = file.file.read()
|
| 109 |
+
extension = file.filename.split('.')[-1]
|
| 110 |
+
if extension == 'csv':
|
| 111 |
+
df = pd.read_csv(io.BytesIO(content))
|
| 112 |
+
elif extension == 'xlsx':
|
| 113 |
+
if sheet_name is None:
|
| 114 |
+
sheet_name = 0 # Default to the first sheet
|
| 115 |
+
df = pd.read_excel(io.BytesIO(content), sheet_name=sheet_name)
|
| 116 |
+
else:
|
| 117 |
+
raise HTTPException(400, "Formato de arquivo não suportado")
|
| 118 |
+
return df, clean_data(df)
|
| 119 |
+
except Exception as e:
|
| 120 |
+
raise HTTPException(500, f"Erro ao processar o arquivo: {str(e)}")
|
| 121 |
+
|
| 122 |
+
# Endpoint para upload e processamento de arquivos
|
| 123 |
+
@app.post("/process-file")
|
| 124 |
+
async def process_file_endpoint(file: UploadFile = File(...), sheet_name: Optional[str] = Query(None)):
|
| 125 |
+
try:
|
| 126 |
+
raw_df, df = process_file(file, sheet_name)
|
| 127 |
+
|
| 128 |
+
columns = [{
|
| 129 |
+
"name": col,
|
| 130 |
+
"type": detect_column_type(df[col].dtype)
|
| 131 |
+
} for col in df.columns]
|
| 132 |
+
|
| 133 |
+
rows = []
|
| 134 |
+
for idx, row in df.iterrows():
|
| 135 |
+
cells = {}
|
| 136 |
+
for col, val in row.items():
|
| 137 |
+
cells[col] = {
|
| 138 |
+
"value": val,
|
| 139 |
+
"displayValue": str(val),
|
| 140 |
+
"columnId": col
|
| 141 |
+
}
|
| 142 |
+
rows.append({"id": str(idx), "cells": cells})
|
| 143 |
+
|
| 144 |
+
return JSONResponse(
|
| 145 |
+
content={
|
| 146 |
+
"data": {
|
| 147 |
+
"columns": columns,
|
| 148 |
+
"rows": rows
|
| 149 |
+
},
|
| 150 |
+
"metadata": {
|
| 151 |
+
"totalRows": len(df),
|
| 152 |
+
"processedAt": pd.Timestamp.now().isoformat()
|
| 153 |
+
}
|
| 154 |
+
})
|
| 155 |
+
except Exception as e:
|
| 156 |
+
raise HTTPException(500, f"Erro: {str(e)}")
|
| 157 |
+
|
| 158 |
+
# Configuração de CORS
|
| 159 |
+
app.add_middleware(
|
| 160 |
+
CORSMiddleware,
|
| 161 |
+
allow_origins=["*"],
|
| 162 |
+
allow_credentials=True,
|
| 163 |
+
allow_methods=["*"],
|
| 164 |
+
allow_headers=["*"],
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
if __name__ == "__main__":
|
| 168 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|