Spaces:
Running
on
Zero
Running
on
Zero
derektan
Init new app to handle planning. Fresh import from 27fe831777c12b25e504dd14e5b661742bdecce6 from VLM-Search
4f09ecf
| """ | |
| Search-TTA demo | |
| """ | |
| # ββββββββββββββββββββββββββ imports βββββββββββββββββββββββββββββββββββ | |
| import cv2 | |
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| import io | |
| import torchaudio | |
| import spaces # integration with ZeroGPU on hf | |
| from torchvision import transforms | |
| import open_clip | |
| from clip_vision_per_patch_model import CLIPVisionPerPatchModel | |
| from transformers import ClapAudioModelWithProjection | |
| from transformers import ClapProcessor | |
| # ββββββββββββββββββββββββββ global config & models ββββββββββββββββββββ | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # BioCLIP (ground-image & text encoder) | |
| bio_model, _, _ = open_clip.create_model_and_transforms("hf-hub:imageomics/bioclip") | |
| bio_model = bio_model.to(device).eval() | |
| bio_tokenizer = open_clip.get_tokenizer("hf-hub:imageomics/bioclip") | |
| # Satellite patch encoder CLIP-L-336 per-patch) | |
| sat_model: CLIPVisionPerPatchModel = ( | |
| CLIPVisionPerPatchModel.from_pretrained("derektan95/search-tta-sat") | |
| .to(device) | |
| .eval() | |
| ) | |
| # Sound CLAP model | |
| sound_model: ClapAudioModelWithProjection = ( | |
| ClapAudioModelWithProjection.from_pretrained("derektan95/search-tta-sound") | |
| .to(device) | |
| .eval() | |
| ) | |
| sound_processor: ClapProcessor = ClapProcessor.from_pretrained("derektan95/search-tta-sound") | |
| SAMPLE_RATE = 48000 | |
| logit_scale = torch.nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
| logit_scale = logit_scale.exp() | |
| blur_kernel = (5,5) | |
| # ββββββββββββββββββββββββββ transforms (exact spec) βββββββββββββββββββ | |
| img_transform = transforms.Compose( | |
| [ | |
| transforms.Resize((256, 256)), | |
| transforms.CenterCrop((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize( | |
| mean=[0.485, 0.456, 0.406], | |
| std=[0.229, 0.224, 0.225], | |
| ), | |
| ] | |
| ) | |
| imo_transform = transforms.Compose( | |
| [ | |
| transforms.Resize((336, 336)), | |
| transforms.ToTensor(), | |
| transforms.Normalize( | |
| mean=[0.485, 0.456, 0.406], | |
| std=[0.229, 0.224, 0.225], | |
| ), | |
| ] | |
| ) | |
| def get_audio_clap(path_to_audio,format="mp3",padding="repeatpad",truncation="fusion"): | |
| track, sr = torchaudio.load(path_to_audio, format=format) # torchaudio.load(path_to_audio) | |
| track = track.mean(axis=0) | |
| track = torchaudio.functional.resample(track, orig_freq=sr, new_freq=SAMPLE_RATE) | |
| output = sound_processor(audios=track, sampling_rate=SAMPLE_RATE, max_length_s=10, return_tensors="pt",padding=padding,truncation=truncation) | |
| return output | |
| # ββββββββββββββββββββββββββ helpers βββββββββββββββββββββββββββββββββββ | |
| def _encode_ground(img_pil: Image.Image) -> torch.Tensor: | |
| img = img_transform(img_pil).unsqueeze(0).to(device) | |
| img_embeds, *_ = bio_model(img) | |
| return img_embeds | |
| def _encode_text(text: str) -> torch.Tensor: | |
| toks = bio_tokenizer(text).to(device) | |
| _, txt_embeds, _ = bio_model(text=toks) | |
| return txt_embeds | |
| def _encode_sat(img_pil: Image.Image) -> torch.Tensor: | |
| imo = imo_transform(img_pil).unsqueeze(0).to(device) | |
| imo_embeds = sat_model(imo) | |
| return imo_embeds | |
| def _encode_sound(sound) -> torch.Tensor: | |
| processed_sound = get_audio_clap(sound) | |
| for k in processed_sound.keys(): | |
| processed_sound[k] = processed_sound[k].to(device) | |
| unnormalized_audio_embeds = sound_model(**processed_sound).audio_embeds | |
| sound_embeds = torch.nn.functional.normalize(unnormalized_audio_embeds, dim=-1) | |
| return sound_embeds | |
| def _similarity_heatmap(query: torch.Tensor, patches: torch.Tensor) -> np.ndarray: | |
| sims = torch.matmul(query, patches.t()) * logit_scale | |
| sims = sims.t().sigmoid() | |
| sims = sims[1:].squeeze() # drop CLS token | |
| side = int(np.sqrt(len(sims))) | |
| sims = sims.reshape(side, side) | |
| return sims.cpu().detach().numpy() | |
| def _array_to_pil(arr: np.ndarray) -> Image.Image: | |
| """ | |
| Render arr with viridis, automatically stretching its own minβmax to 0β1 | |
| so that the most-similar patches appear yellow. | |
| """ | |
| # Gausian Smoothing | |
| if blur_kernel != (0,0): | |
| arr = cv2.GaussianBlur(arr, blur_kernel, 0) | |
| # --- contrast-stretch to local 0-1 range -------------------------- | |
| arr_min, arr_max = float(arr.min()), float(arr.max()) | |
| if arr_max - arr_min < 1e-6: # avoid /0 when the heat-map is flat | |
| arr_scaled = np.zeros_like(arr) | |
| else: | |
| arr_scaled = (arr - arr_min) / (arr_max - arr_min) | |
| # ------------------------------------------------------------------ | |
| fig, ax = plt.subplots(figsize=(2.6, 2.6), dpi=96) | |
| ax.imshow(arr_scaled, cmap="viridis", vmin=0.0, vmax=1.0) | |
| ax.axis("off") | |
| buf = io.BytesIO() | |
| plt.tight_layout(pad=0) | |
| fig.savefig(buf, format="png", bbox_inches="tight", pad_inches=0) | |
| plt.close(fig) | |
| buf.seek(0) | |
| return Image.open(buf) | |
| # ββββββββββββββββββββββββββ main inference ββββββββββββββββββββββββββββ | |
| # integration with ZeroGPU on hf | |
| def process( | |
| sat_img: Image.Image, | |
| taxonomy: str, | |
| ground_img: Image.Image | None, | |
| sound: torch.Tensor | None, | |
| ): | |
| if sat_img is None: | |
| return None, None | |
| patches = _encode_sat(sat_img) | |
| heat_ground, heat_text, heat_sound = None, None, None | |
| if ground_img is not None: | |
| q_img = _encode_ground(ground_img) | |
| heat_ground = _array_to_pil(_similarity_heatmap(q_img, patches)) | |
| if taxonomy.strip(): | |
| q_txt = _encode_text(taxonomy.strip()) | |
| heat_text = _array_to_pil(_similarity_heatmap(q_txt, patches)) | |
| if sound is not None: | |
| q_sound = _encode_sound(sound) | |
| heat_sound = _array_to_pil(_similarity_heatmap(q_sound, patches)) | |
| return heat_ground, heat_text, heat_sound | |
| # ββββββββββββββββββββββββββ Gradio UI βββββββββββββββββββββββββββββββββ | |
| with gr.Blocks(title="Search-TTA", theme=gr.themes.Base()) as demo: | |
| with gr.Row(): | |
| gr.Markdown( | |
| """ | |
| <div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
| <div> | |
| <h1>Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild</h1> | |
| <span></span> | |
| <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\ | |
| <a href="https://search-tta.github.io">Project Website</a> | |
| </h2> | |
| <span></span> | |
| <h2 style='font-weight: 450; font-size: 0.5rem; margin: 0rem'>[Work in Progress]</h2> | |
| </div> | |
| </div> | |
| """ | |
| # <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>WACV 2025</h2> | |
| # <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\ | |
| # <a href="https://derektan95.github.io">Derek M. S. Tan</a>, | |
| # <a href="https://chinchinati.github.io/">Shailesh</a>, | |
| # <a href="https://www.linkedin.com/in/boyang-liu-nus">Boyang Liu</a>, | |
| # <a href="https://www.linkedin.com/in/loki-silvres">Alok Raj</a>, | |
| # <a href="https://www.linkedin.com/in/ang-qi-xuan-714347142">Qi Xuan Ang</a>, | |
| # <a href="https://weihengdai.top">Weiheng Dai</a>, | |
| # <a href="https://www.linkedin.com/in/tanishqduhan">Tanishq Duhan</a>, | |
| # <a href="https://www.linkedin.com/in/jimmychiun">Jimmy Chiun</a>, | |
| # <a href="https://www.yuhongcao.online/">Yuhong Cao</a>, | |
| # <a href="https://www.cs.toronto.edu/~florian/">Florian Shkurti</a>, | |
| # <a href="https://www.marmotlab.org/bio.html">Guillaume Sartoretti</a> | |
| # </h2> | |
| # <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>National University of Singapore, University of Toronto, IIT-Dhanbad, Singapore Technologies Engineering</h2> | |
| ) | |
| with gr.Row(variant="panel"): | |
| # LEFT COLUMN (satellite, taxonomy, run) | |
| with gr.Column(): | |
| sat_input = gr.Image( | |
| label="Satellite Image", | |
| sources=["upload"], | |
| type="pil", | |
| height=320, | |
| ) | |
| taxonomy_input = gr.Textbox( | |
| label="Full Taxonomy Name (optional)", | |
| placeholder="e.g. Animalia Chordata Mammalia Rodentia Sciuridae Marmota marmota", | |
| ) | |
| # βββ NEW: sound input βββββββββββββββββββββββββββ | |
| sound_input = gr.Audio( | |
| label="Sound Input (optional)", | |
| sources=["upload"], # or "microphone" / "url" as you prefer | |
| type="filepath", # or "numpy" if you want raw arrays | |
| ) | |
| run_btn = gr.Button("Run", variant="primary") | |
| # RIGHT COLUMN (ground image + two heat-maps) | |
| with gr.Column(): | |
| ground_input = gr.Image( | |
| label="Ground-level Image (optional)", | |
| sources=["upload"], | |
| type="pil", | |
| height=320, | |
| ) | |
| gr.Markdown("### Heat-map Results") | |
| with gr.Row(): | |
| # Separate label and image to avoid overlap | |
| with gr.Column(scale=1, min_width=100): | |
| gr.Markdown("**Ground Image Query**", elem_id="label-ground") | |
| heat_ground_out = gr.Image( | |
| show_label=False, | |
| height=160, | |
| # width=160, | |
| ) | |
| with gr.Column(scale=1, min_width=100): | |
| gr.Markdown("**Text Query**", elem_id="label-text") | |
| heat_text_out = gr.Image( | |
| show_label=False, | |
| height=160, | |
| # width=160, | |
| ) | |
| with gr.Column(scale=1, min_width=100): | |
| gr.Markdown("**Sound Query**", elem_id="label-sound") | |
| heat_sound_out = gr.Image( | |
| show_label=False, | |
| height=160, | |
| # width=160, | |
| ) | |
| # βββ NEW: sound output βββββββββββββββββββββββββ | |
| # sound_output = gr.Audio( | |
| # label="Playback", | |
| # ) | |
| # EXAMPLES | |
| with gr.Row(): | |
| gr.Markdown("### In-Domain Taxonomy") | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| "examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/80645_39.76079_-74.10316.jpg", | |
| "examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/cc1ebaf9-899d-49f2-81c8-d452249a8087.jpg", | |
| "Animalia Chordata Aves Charadriiformes Laridae Larus marinus", | |
| "examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/89758229.mp3" | |
| ], | |
| [ | |
| "examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/28871_-12.80255_-69.29999.jpg", | |
| "examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/1b8064f8-7deb-4b30-98cd-69da98ba6a3d.jpg", | |
| "Animalia Chordata Mammalia Rodentia Caviidae Hydrochoerus hydrochaeris", | |
| "examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/166631961.mp3" | |
| ], | |
| [ | |
| "examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/277303_38.72364_-75.07749.jpg", | |
| "examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/0b9cc264-a2ba-44bd-8e41-0d01a6edd1e8.jpg", | |
| "Animalia Arthropoda Malacostraca Decapoda Ocypodidae Ocypode quadrata", | |
| "examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/12372063.mp3" | |
| ], | |
| [ | |
| "examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/388246_45.49036_7.14796.jpg", | |
| "examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/327e1f07-692b-4140-8a3e-bd098bc064ff.jpg", | |
| "Animalia Chordata Mammalia Rodentia Sciuridae Marmota marmota", | |
| "examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/59677071.mp3" | |
| ], | |
| [ | |
| "examples/Animalia_Chordata_Reptilia_Squamata_Varanidae_Varanus_salvator/410613_5.35573_100.28948.jpg", | |
| "examples/Animalia_Chordata_Reptilia_Squamata_Varanidae_Varanus_salvator/461d8e6c-0e66-4acc-8ecd-bfd9c218bc14.jpg", | |
| "Animalia Chordata Reptilia Squamata Varanidae Varanus salvator", | |
| None | |
| ], | |
| ], | |
| inputs=[sat_input, ground_input, taxonomy_input, sound_input], | |
| outputs=[heat_ground_out, heat_text_out, heat_sound_out], | |
| fn=process, | |
| cache_examples=False, | |
| ) | |
| # EXAMPLES | |
| with gr.Row(): | |
| gr.Markdown("### Out-Domain Taxonomy") | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| "examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/27423_35.64005_-121.17595.jpg", | |
| "examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/3aac526d-c921-452a-af6a-cb4f2f52e2c4.jpg", | |
| "Animalia Chordata Mammalia Carnivora Phocidae Mirounga angustirostris", | |
| "examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/3123948.mp3" | |
| ], | |
| [ | |
| "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/1528408_13.00422_80.23033.jpg", | |
| "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/37faabd2-a613-4461-b27e-82fe5955ecaf.jpg", | |
| "Animalia Chordata Mammalia Carnivora Canidae Canis aureus", | |
| "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/189318716.mp3" | |
| ], | |
| [ | |
| "examples/Animalia_Chordata_Mammalia_Carnivora_Ursidae_Ursus_americanus/yosemite_v3_resized.png", | |
| "examples/Animalia_Chordata_Mammalia_Carnivora_Ursidae_Ursus_americanus/248820933.jpeg", | |
| "Animalia Chordata Mammalia Carnivora Ursidae Ursus americanus", | |
| None | |
| ], | |
| [ | |
| "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Urocyon_littoralis/304160_34.0144_-119.54417.jpg", | |
| "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Urocyon_littoralis/0cbdfbf2-6cfe-4d61-9602-c949f24d0293.jpg", | |
| "Animalia Chordata Mammalia Carnivora Canidae Urocyon littoralis", | |
| None | |
| ], | |
| ], | |
| inputs=[sat_input, ground_input, taxonomy_input, sound_input], | |
| outputs=[heat_ground_out, heat_text_out, heat_sound_out], | |
| fn=process, | |
| cache_examples=False, | |
| ) | |
| # CALLBACK | |
| run_btn.click( | |
| fn=process, | |
| inputs=[sat_input, taxonomy_input, ground_input, sound_input], | |
| outputs=[heat_ground_out, heat_text_out, heat_sound_out], | |
| ) | |
| # Footer to point out to model and data from app page. | |
| gr.Markdown( | |
| """ | |
| The satellite image CLIP encoder is fine-tuned using [Sentinel-2 Level 2A](https://docs.sentinel-hub.com/api/latest/data/sentinel-2-l2a/) satellite image and taxonomy images (with GPS locations) from [iNaturalist](https://inaturalist.org/). The sound CLIP encoder is fine-tuned with a subset of the same taxonomy images and their corresponding sounds from [iNaturalist](https://inaturalist.org/). Note that while some of the examples above result in poor probability distributions, they will be improved using our test-time adaptation framework during the search process. | |
| """ | |
| ) | |
| # LAUNCH | |
| if __name__ == "__main__": | |
| demo.queue(max_size=15) | |
| demo.launch(share=True) | |