davideuler
fix for switching between Google and OpenAI Compatible LLM as translator
2ebcead
import os
import json
import hashlib
from pathlib import Path
import streamlit as st
import pymupdf
from deep_translator import (
GoogleTranslator,
)
from deep_translator.openai_compatible import OpenAICompatibleTranslator
import logging
import argparse
# Constants
DEFAULT_PAGES_PER_LOAD = 2
DEFAULT_MODEL = "default_model"
DEFAULT_API_BASE = "http://localhost:8080/v1"
# Supported translators
TRANSLATORS = {
'OpenAI Compatible': OpenAICompatibleTranslator,
'OpenAI': OpenAICompatibleTranslator,
'Google': GoogleTranslator,
}
# Color options
COLOR_MAP = {
"darkred": (0.8, 0, 0),
"black": (0, 0, 0),
"blue": (0, 0, 0.8),
"darkgreen": (0, 0.5, 0),
"purple": (0.5, 0, 0.5),
}
# Target language options for ChatGPT
LANGUAGE_OPTIONS = {
"简体中文": "zh-CN",
"繁體中文": "zh-TW",
"English": "en",
"日本語": "ja",
"한국어": "ko",
"Español": "es",
"Français": "fr",
"Deutsch": "de",
}
# Add source language options
SOURCE_LANGUAGE_OPTIONS = {
"English": "en",
"简体中文": "zh-CN",
"繁體中文": "zh-TW",
"日本語": "ja",
"한국어": "ko",
"Español": "es",
"Français": "fr",
"Deutsch": "de",
"Auto": "auto",
}
# Global translation configuration
TRANSLATOR_CONFIG = {
"type": "Google", # Options: "Google" or "OpenAI"
# OpenAI settings (used only if type is "OpenAI")
"openai": {
"default_api_base": DEFAULT_API_BASE,
"default_model": DEFAULT_MODEL, # "gpt-4o-mini",
"default_api_key": "sk-xxx"
},
# Google settings (used only if type is "Google")
"google": {
"default_api_base": "https://translate.googleapis.com"
}
}
# Add argument parser
def parse_args():
parser = argparse.ArgumentParser(description='PDF Translator Application')
parser.add_argument(
'--translator',
type=str,
choices=['google', 'openai'],
default='google',
help='Specify translator type: google or openai'
)
parser.add_argument(
'--api-base',
type=str,
help='API base URL for the translator'
)
parser.add_argument(
'--api-key',
type=str,
help='API key for OpenAI compatible translator'
)
parser.add_argument(
'--model',
type=str,
help='Model name for OpenAI compatible translator'
)
return parser.parse_args()
# Update TRANSLATOR_CONFIG based on command line arguments
def update_translator_config(args):
global TRANSLATOR_CONFIG
TRANSLATOR_CONFIG["type"] = "Google" if args.translator.lower() == "google" else "OpenAI"
if args.translator.lower() == "google":
if args.api_base:
TRANSLATOR_CONFIG["google"]["default_api_base"] = args.api_base
else: # OpenAI
if args.api_base:
TRANSLATOR_CONFIG["openai"]["default_api_base"] = args.api_base
if args.api_key:
TRANSLATOR_CONFIG["openai"]["default_api_key"] = args.api_key
if args.model:
TRANSLATOR_CONFIG["openai"]["default_model"] = args.model
def get_cache_dir():
"""Get or create cache directory"""
cache_dir = Path('.cached')
cache_dir.mkdir(exist_ok=True)
return cache_dir
def get_cache_key(doc_info: dict, page_num: int, translator_name: str, target_lang: str, text_content: str):
"""Generate cache key for a specific page translation"""
# 使用文档信息和页面内容的组合生成唯一标识
content_hash = hashlib.md5(text_content.encode('utf-8')).hexdigest()[:8]
doc_id = f"{doc_info.get('title', '')}_{doc_info.get('author', '')}_{doc_info.get('pagecount', '')}"
doc_hash = hashlib.md5(doc_id.encode('utf-8')).hexdigest()[:8]
return f"{doc_hash}_{content_hash}_page{page_num}_{translator_name}_{target_lang}.pdf"
def get_cached_translation(cache_key: str) -> pymupdf.Document:
"""Get cached translation if exists"""
cache_path = get_cache_dir() / cache_key
if cache_path.exists():
try:
return pymupdf.open(str(cache_path))
except Exception as e:
logging.error(f"Error loading cache: {str(e)}")
return None
return None
def save_translation_cache(doc: pymupdf.Document, cache_key: str):
"""Save translation to cache"""
cache_path = get_cache_dir() / cache_key
doc.save(str(cache_path)) # 确保提供文件路径字符串
def translate_pdf_pages(doc, doc_bytes, start_page, num_pages, translator, text_color, translator_name, target_lang):
"""Translate specific pages of a PDF document with progress and caching"""
# Log translator information
logging.info(f"Using translator: {translator_name}, source: {translator._source}, target: {translator._target}")
logging.info(f"Selected translator: {translator_name}, Class: {translator.__class__.__name__}")
WHITE = pymupdf.pdfcolor["white"]
rgb_color = COLOR_MAP.get(text_color.lower(), COLOR_MAP["darkred"])
translated_pages = []
total_pages = min(start_page + num_pages, doc.page_count) - start_page
cache_hits = 0
# Create a progress bar
progress_bar = st.progress(0)
status_text = st.empty()
for i, page_num in enumerate(range(start_page, min(start_page + num_pages, doc.page_count))):
status_text.text(f"Translating page {page_num + 1}...")
# Extract text content for cache key
page = doc[page_num]
text_content = page.get_text("text")
# Check cache first using text content
cache_key = get_cache_key(
doc.metadata,
page_num,
translator_name,
target_lang,
text_content
)
cached_doc = get_cached_translation(cache_key)
if cached_doc is not None:
translated_pages.append(cached_doc)
cache_hits += 1
logging.info(f"Cache hit: Using cached translation for page {page_num + 1}")
status_text.text(f"Using cached translation for page {page_num + 1}")
else:
logging.info(f"Cache miss: Translating page {page_num + 1}")
status_text.text(f"Translating page {page_num + 1} (not in cache)")
# Create a new PDF document for this page
new_doc = pymupdf.open()
new_doc.insert_pdf(doc, from_page=page_num, to_page=page_num)
page = new_doc[0]
# Extract and translate text blocks
blocks = page.get_text("blocks", flags=pymupdf.TEXT_DEHYPHENATE)
for block in blocks:
bbox = block[:4]
text = block[4]
translated = translator.translate(text)
translated = str(translated) # Ensure the value is a string
# Cover original text with white and add translation in color
page.draw_rect(bbox, color=None, fill=WHITE)
page.insert_htmlbox(
bbox,
translated,
css=f"* {{font-family: sans-serif; color: rgb({int(rgb_color[0]*255)}, {int(rgb_color[1]*255)}, {int(rgb_color[2]*255)});}}"
)
# Save to cache
save_translation_cache(new_doc, cache_key)
translated_pages.append(new_doc)
logging.info(f"Cached new translation for page {page_num + 1}")
# Update progress
progress = (i + 1) / total_pages
progress_bar.progress(progress)
# Clear progress indicators and show summary
progress_bar.empty()
if cache_hits > 0:
st.info(f"Used cache for {cache_hits} out of {total_pages} pages")
return translated_pages
def get_page_image(page, scale=2):
"""Get high quality image from PDF page"""
# 计算缩放后的尺寸
zoom = scale
mat = pymupdf.Matrix(zoom, zoom)
# 使用较低分辨率渲染页面,但保持清晰度
pix = page.get_pixmap(
matrix=mat,
alpha=False,
colorspace="rgb", # Use RGB instead of RGBA
)
return pix
def translate_all_pages(
input_doc,
output_doc,
translator,
progress_bar,
batch_size=1,
**kwargs
):
"""Translate all pages of the PDF document"""
# Log translator information for full document translation
logging.info(f"Starting full document translation with: {kwargs.get('translator_name', 'unknown')}")
logging.info(f"Translator settings - source: {translator._source}, target: {translator._target}")
# Define colors
WHITE = pymupdf.pdfcolor["white"]
rgb_color = COLOR_MAP.get(kwargs.get('text_color', 'darkred').lower(), COLOR_MAP["darkred"])
total_pages = input_doc.page_count
# Create a progress bar for overall progress
status_text = st.empty()
# Translate all pages using translate_pdf_pages
translated_pages = translate_pdf_pages(
input_doc,
None, # doc_bytes not needed as we're using text content for cache
0, # start from first page
total_pages, # translate all pages
translator,
kwargs.get('text_color', 'darkred'),
kwargs.get('translator_name', 'google'),
kwargs.get('target_lang', 'zh-CN')
)
# Combine all pages into one PDF with compression
output_path = kwargs.get('output_path', 'output.pdf')
for trans_doc in translated_pages:
output_doc.insert_pdf(trans_doc)
# Save with compression options
output_doc.save(
output_path,
garbage=4,
deflate=True,
clean=True,
linear=True
)
return output_doc
def init_session_state():
"""Initialize session state variables"""
if 'current_page' not in st.session_state:
st.session_state.current_page = 0
if 'translation_started' not in st.session_state:
st.session_state.translation_started = True
if 'all_translated' not in st.session_state:
st.session_state.all_translated = False
if 'translated_doc' not in st.session_state:
st.session_state.translated_doc = None
if 'previous_file' not in st.session_state:
st.session_state.previous_file = None
if 'api_settings' not in st.session_state:
st.session_state.api_settings = {}
def main():
st.set_page_config(layout="wide", page_title="PDF Translator for Human")
st.title("PDF Translator for Human")
# Initialize session state
init_session_state()
# Sidebar configuration
with st.sidebar:
st.header("Settings")
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
# Reset session state when a new file is uploaded
if uploaded_file is not None and (st.session_state.previous_file is None or
uploaded_file.name != st.session_state.previous_file):
st.session_state.current_page = 0
st.session_state.translation_started = True
st.session_state.all_translated = False
st.session_state.translated_doc = None
st.session_state.previous_file = uploaded_file.name
st.rerun()
# Add source language selection
source_lang_name = st.selectbox(
"Source Language",
options=list(SOURCE_LANGUAGE_OPTIONS.keys()),
index=0 # Default to English
)
source_lang = SOURCE_LANGUAGE_OPTIONS[source_lang_name]
pages_per_load = st.number_input(
"Pages per load",
min_value=1,
max_value=5,
value=DEFAULT_PAGES_PER_LOAD
)
text_color = st.selectbox(
"Translation Color",
options=list(COLOR_MAP.keys()),
index=0
)
target_lang = st.selectbox(
"Target Language",
options=list(LANGUAGE_OPTIONS.keys()),
index=0
)
target_lang_code = LANGUAGE_OPTIONS[target_lang]
# Add translator selection
st.subheader("Translator Settings")
translator_type = st.radio(
"Translator",
options=["Google", "OpenAI Compatible"],
index=0 if TRANSLATOR_CONFIG["type"] == "Google" else 1
)
# API Configuration based on translator selection
if translator_type == "OpenAI Compatible":
api_key = st.text_input(
"API Key",
value=TRANSLATOR_CONFIG["openai"]["default_api_key"],
type="password"
)
api_base = st.text_input(
"API Base URL",
value=TRANSLATOR_CONFIG["openai"]["default_api_base"]
)
model = st.text_input(
"Model Name",
value=TRANSLATOR_CONFIG["openai"]["default_model"]
)
# Store API settings
st.session_state.api_settings.update({
'api_key': api_key,
'api_base': api_base,
'model': model
})
else: # Google Translator
# No configuration needed for Google Translator
st.session_state.api_settings.update({
'api_base': TRANSLATOR_CONFIG["google"]["default_api_base"]
})
# Main content area
if uploaded_file is not None:
doc_bytes = uploaded_file.read()
doc = pymupdf.open(stream=doc_bytes)
# Create two columns for side-by-side display
col1, col2 = st.columns(2)
# Display original pages
with col1:
st.header("Original")
for page_num in range(st.session_state.current_page,
min(st.session_state.current_page + pages_per_load, doc.page_count)):
page = doc[page_num]
pix = get_page_image(page)
st.image(pix.tobytes(), caption=f"Page {page_num + 1}", use_container_width=True)
# Translation column
with col2:
st.header("Translated")
try:
# Initialize translator based on user selection
if translator_type == "Google":
translator = GoogleTranslator(
source=source_lang,
target=target_lang_code
)
else:
translator = OpenAICompatibleTranslator(
source=source_lang,
target=target_lang_code,
api_key=st.session_state.api_settings.get('api_key'),
base_url=st.session_state.api_settings.get('api_base'),
model=st.session_state.api_settings.get('model')
)
# Translate current batch of pages
translated_pages = translate_pdf_pages(
doc,
doc_bytes,
st.session_state.current_page,
pages_per_load,
translator,
text_color,
translator_type,
target_lang_code
)
# Display translated pages
for i, trans_doc in enumerate(translated_pages):
page = trans_doc[0]
pix = get_page_image(page)
st.image(pix.tobytes(), caption=f"Page {st.session_state.current_page + i + 1}", use_container_width=True)
except Exception as e:
st.error(f"Translation error: {str(e)}")
logging.error(f"Translation error: {str(e)}")
return
# Navigation and action buttons
st.markdown("---") # Add a separator
button_col1, button_col2, button_col3, button_col4 = st.columns(4)
# Previous Pages button
with button_col1:
if st.session_state.current_page > 0:
if st.button("Previous Pages", use_container_width=True):
st.session_state.current_page = max(0, st.session_state.current_page - pages_per_load)
st.rerun()
else:
st.button("Previous Pages", disabled=True, use_container_width=True)
# Next Pages button
with button_col2:
if st.session_state.current_page + pages_per_load < doc.page_count:
if st.button("Next Pages", use_container_width=True):
st.session_state.current_page = min(
doc.page_count - 1,
st.session_state.current_page + pages_per_load
)
st.rerun()
else:
st.button("Next Pages", disabled=True, use_container_width=True)
# Translate All button
with button_col3:
if st.button("Translate All",
disabled=st.session_state.all_translated,
use_container_width=True):
try:
# Initialize translator based on user selection
if translator_type == "Google":
translator = GoogleTranslator(
source=source_lang,
target=target_lang_code
)
else:
translator = OpenAICompatibleTranslator(
source=source_lang,
target=target_lang_code,
api_key=st.session_state.api_settings.get('api_key'),
base_url=st.session_state.api_settings.get('api_base'),
model=st.session_state.api_settings.get('model')
)
# Translate all pages
output_doc = pymupdf.open()
output_path = f"translated_{uploaded_file.name}"
output_doc = translate_all_pages(
doc,
output_doc,
translator,
st.empty(),
pages_per_load,
text_color=text_color,
translator_name=translator_type,
target_lang=target_lang_code,
output_path=output_path
)
st.session_state.all_translated = True
st.session_state.translated_doc = output_path
st.rerun()
except Exception as e:
st.error(f"Translation error: {str(e)}")
logging.error(f"Translation error: {str(e)}")
return
# Download button
with button_col4:
if not st.session_state.all_translated:
st.markdown(
"""
<div title="You can download the translated file after all content has been translated">
<button style="width: 100%" disabled>Download</button>
</div>
""",
unsafe_allow_html=True
)
else:
with open(st.session_state.translated_doc, "rb") as file:
st.download_button(
"Download",
file,
file_name=f"translated_{uploaded_file.name}",
mime="application/pdf",
use_container_width=True
)
else:
st.info("Please upload a PDF file to begin translation")
# 使用Google翻译(默认):
# streamlit run app.py
# 使用Google翻译并指定API base:
# streamlit run app.py --translator google --api-base https://translate.googleapis.com
# 使用OpenAI兼容模型:
# python app.py --translator openai --model default_model --api-key sk-xxx --api-base http://localhost:8080/v1
# 使用OpenAI翻译并指定API base:
# python app.py --translator openai --api-base https://api.openai.com/v1 --model gpt-4o-mini --api-key sk-xxx
if __name__ == "__main__":
args = parse_args()
update_translator_config(args)
main()