File size: 20,592 Bytes
9d793d0
 
 
 
 
 
 
 
 
57c2b26
 
2527e5c
9d793d0
 
 
 
 
 
 
 
57c2b26
7c278e2
2527e5c
9d793d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2527e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d793d0
 
 
 
 
 
57c2b26
9d793d0
57c2b26
 
 
 
 
9d793d0
 
 
 
 
57c2b26
 
 
 
 
9d793d0
 
 
 
 
57c2b26
9d793d0
 
 
2527e5c
 
 
 
9d793d0
 
 
 
57c2b26
 
9d793d0
 
 
 
 
 
 
 
57c2b26
 
 
 
 
 
 
 
 
 
 
 
 
9d793d0
 
 
 
57c2b26
 
 
9d793d0
57c2b26
 
 
9d793d0
 
 
 
 
 
 
 
 
 
 
 
2527e5c
9d793d0
 
 
 
 
 
 
 
 
 
 
 
57c2b26
9d793d0
 
57c2b26
9d793d0
 
57c2b26
9d793d0
57c2b26
 
9d793d0
 
 
57c2b26
9d793d0
 
 
 
 
57c2b26
 
 
 
 
 
9d793d0
 
 
57c2b26
 
 
 
 
 
 
 
 
2527e5c
 
 
 
57c2b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6990e21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d793d0
2527e5c
 
9d793d0
6990e21
 
 
9d793d0
 
 
 
 
 
d3f93de
6990e21
 
d3f93de
 
 
 
 
 
 
9d793d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2527e5c
 
 
 
 
 
 
2ebcead
 
 
 
 
 
 
 
 
 
2527e5c
 
 
 
9d793d0
 
 
2527e5c
9d793d0
 
 
2527e5c
9d793d0
 
2527e5c
7c278e2
 
 
 
 
2527e5c
2ebcead
2527e5c
2ebcead
2527e5c
9d793d0
 
 
 
 
 
 
 
 
2527e5c
9d793d0
 
 
 
 
 
 
 
 
 
 
 
2527e5c
2ebcead
 
2527e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ebcead
2527e5c
 
 
 
 
 
 
 
9d793d0
2527e5c
 
 
 
 
 
57c2b26
 
 
 
 
9d793d0
57c2b26
9d793d0
 
57c2b26
 
9d793d0
57c2b26
 
9d793d0
57c2b26
9d793d0
 
 
 
 
57c2b26
 
 
 
 
 
 
 
2527e5c
2ebcead
 
2527e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ebcead
2527e5c
 
 
 
 
 
 
 
 
 
 
57c2b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d793d0
 
 
2527e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
9d793d0
2527e5c
 
9d793d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import os
import json
import hashlib
from pathlib import Path
import streamlit as st
import pymupdf
from deep_translator import (
    GoogleTranslator,
)
from deep_translator.openai_compatible import OpenAICompatibleTranslator
import logging
import argparse

# Constants
DEFAULT_PAGES_PER_LOAD = 2
DEFAULT_MODEL = "default_model"
DEFAULT_API_BASE = "http://localhost:8080/v1"

# Supported translators
TRANSLATORS = {
    'OpenAI Compatible': OpenAICompatibleTranslator,
    'OpenAI': OpenAICompatibleTranslator,
    'Google': GoogleTranslator,
}

# Color options
COLOR_MAP = {
    "darkred": (0.8, 0, 0),
    "black": (0, 0, 0),
    "blue": (0, 0, 0.8),
    "darkgreen": (0, 0.5, 0),
    "purple": (0.5, 0, 0.5),
}

# Target language options for ChatGPT
LANGUAGE_OPTIONS = {
    "简体中文": "zh-CN",
    "繁體中文": "zh-TW",
    "English": "en",
    "日本語": "ja",
    "한국어": "ko",
    "Español": "es",
    "Français": "fr",
    "Deutsch": "de",
}

# Add source language options
SOURCE_LANGUAGE_OPTIONS = {
    "English": "en",
    "简体中文": "zh-CN",
    "繁體中文": "zh-TW",
    "日本語": "ja",
    "한국어": "ko",
    "Español": "es",
    "Français": "fr",
    "Deutsch": "de",
    "Auto": "auto",
}

# Global translation configuration
TRANSLATOR_CONFIG = {
    "type": "Google",  # Options: "Google" or "OpenAI"
    # OpenAI settings (used only if type is "OpenAI")
    "openai": {
        "default_api_base": DEFAULT_API_BASE,
        "default_model": DEFAULT_MODEL, # "gpt-4o-mini",
        "default_api_key": "sk-xxx"
    },
    # Google settings (used only if type is "Google")
    "google": {
        "default_api_base": "https://translate.googleapis.com"
    }
}

# Add argument parser
def parse_args():
    parser = argparse.ArgumentParser(description='PDF Translator Application')
    parser.add_argument(
        '--translator', 
        type=str, 
        choices=['google', 'openai'], 
        default='google',
        help='Specify translator type: google or openai'
    )
    parser.add_argument(
        '--api-base',
        type=str,
        help='API base URL for the translator'
    )
    parser.add_argument(
        '--api-key',
        type=str,
        help='API key for OpenAI compatible translator'
    )
    parser.add_argument(
        '--model',
        type=str,
        help='Model name for OpenAI compatible translator'
    )
    return parser.parse_args()

# Update TRANSLATOR_CONFIG based on command line arguments
def update_translator_config(args):
    global TRANSLATOR_CONFIG
    
    TRANSLATOR_CONFIG["type"] = "Google" if args.translator.lower() == "google" else "OpenAI"
    
    if args.translator.lower() == "google":
        if args.api_base:
            TRANSLATOR_CONFIG["google"]["default_api_base"] = args.api_base
    else:  # OpenAI
        if args.api_base:
            TRANSLATOR_CONFIG["openai"]["default_api_base"] = args.api_base
        if args.api_key:
            TRANSLATOR_CONFIG["openai"]["default_api_key"] = args.api_key
        if args.model:
            TRANSLATOR_CONFIG["openai"]["default_model"] = args.model

def get_cache_dir():
    """Get or create cache directory"""
    cache_dir = Path('.cached')
    cache_dir.mkdir(exist_ok=True)
    return cache_dir

def get_cache_key(doc_info: dict, page_num: int, translator_name: str, target_lang: str, text_content: str):
    """Generate cache key for a specific page translation"""
    # 使用文档信息和页面内容的组合生成唯一标识
    content_hash = hashlib.md5(text_content.encode('utf-8')).hexdigest()[:8]
    doc_id = f"{doc_info.get('title', '')}_{doc_info.get('author', '')}_{doc_info.get('pagecount', '')}"
    doc_hash = hashlib.md5(doc_id.encode('utf-8')).hexdigest()[:8]
    return f"{doc_hash}_{content_hash}_page{page_num}_{translator_name}_{target_lang}.pdf"

def get_cached_translation(cache_key: str) -> pymupdf.Document:
    """Get cached translation if exists"""
    cache_path = get_cache_dir() / cache_key
    if cache_path.exists():
        try:
            return pymupdf.open(str(cache_path))
        except Exception as e:
            logging.error(f"Error loading cache: {str(e)}")
            return None
    return None

def save_translation_cache(doc: pymupdf.Document, cache_key: str):
    """Save translation to cache"""
    cache_path = get_cache_dir() / cache_key
    doc.save(str(cache_path))  # 确保提供文件路径字符串

def translate_pdf_pages(doc, doc_bytes, start_page, num_pages, translator, text_color, translator_name, target_lang):
    """Translate specific pages of a PDF document with progress and caching"""
    # Log translator information
    logging.info(f"Using translator: {translator_name}, source: {translator._source}, target: {translator._target}")
    logging.info(f"Selected translator: {translator_name}, Class: {translator.__class__.__name__}")
    
    WHITE = pymupdf.pdfcolor["white"]
    rgb_color = COLOR_MAP.get(text_color.lower(), COLOR_MAP["darkred"])
    
    translated_pages = []
    total_pages = min(start_page + num_pages, doc.page_count) - start_page
    cache_hits = 0
    
    # Create a progress bar
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    for i, page_num in enumerate(range(start_page, min(start_page + num_pages, doc.page_count))):
        status_text.text(f"Translating page {page_num + 1}...")
        
        # Extract text content for cache key
        page = doc[page_num]
        text_content = page.get_text("text")
        
        # Check cache first using text content
        cache_key = get_cache_key(
            doc.metadata,
            page_num,
            translator_name,
            target_lang,
            text_content
        )
        
        cached_doc = get_cached_translation(cache_key)
        
        if cached_doc is not None:
            translated_pages.append(cached_doc)
            cache_hits += 1
            logging.info(f"Cache hit: Using cached translation for page {page_num + 1}")
            status_text.text(f"Using cached translation for page {page_num + 1}")
        else:
            logging.info(f"Cache miss: Translating page {page_num + 1}")
            status_text.text(f"Translating page {page_num + 1} (not in cache)")
            
            # Create a new PDF document for this page
            new_doc = pymupdf.open()
            new_doc.insert_pdf(doc, from_page=page_num, to_page=page_num)
            page = new_doc[0]
            
            # Extract and translate text blocks
            blocks = page.get_text("blocks", flags=pymupdf.TEXT_DEHYPHENATE)
            
            for block in blocks:
                bbox = block[:4]
                text = block[4]
                translated = translator.translate(text)
                translated = str(translated)  # Ensure the value is a string
                
                # Cover original text with white and add translation in color
                page.draw_rect(bbox, color=None, fill=WHITE)
                page.insert_htmlbox(
                    bbox,
                    translated,
                    css=f"* {{font-family: sans-serif; color: rgb({int(rgb_color[0]*255)}, {int(rgb_color[1]*255)}, {int(rgb_color[2]*255)});}}"
                )
            
            # Save to cache
            save_translation_cache(new_doc, cache_key)
            translated_pages.append(new_doc)
            logging.info(f"Cached new translation for page {page_num + 1}")
        
        # Update progress
        progress = (i + 1) / total_pages
        progress_bar.progress(progress)
    
    # Clear progress indicators and show summary
    progress_bar.empty()
    if cache_hits > 0:
        st.info(f"Used cache for {cache_hits} out of {total_pages} pages")
    
    return translated_pages

def get_page_image(page, scale=2):
    """Get high quality image from PDF page"""
    # 计算缩放后的尺寸
    zoom = scale
    mat = pymupdf.Matrix(zoom, zoom)
    
    # 使用较低分辨率渲染页面,但保持清晰度
    pix = page.get_pixmap(
        matrix=mat,
        alpha=False,
        colorspace="rgb",  # Use RGB instead of RGBA
    )
    
    return pix

def translate_all_pages(
    input_doc,
    output_doc,
    translator,
    progress_bar,
    batch_size=1,
    **kwargs
):
    """Translate all pages of the PDF document"""
    # Log translator information for full document translation
    logging.info(f"Starting full document translation with: {kwargs.get('translator_name', 'unknown')}")
    logging.info(f"Translator settings - source: {translator._source}, target: {translator._target}")
    
    # Define colors
    WHITE = pymupdf.pdfcolor["white"]
    rgb_color = COLOR_MAP.get(kwargs.get('text_color', 'darkred').lower(), COLOR_MAP["darkred"])
    
    total_pages = input_doc.page_count
    
    # Create a progress bar for overall progress
    status_text = st.empty()
    
    # Translate all pages using translate_pdf_pages
    translated_pages = translate_pdf_pages(
        input_doc,
        None,  # doc_bytes not needed as we're using text content for cache
        0,  # start from first page
        total_pages,  # translate all pages
        translator,
        kwargs.get('text_color', 'darkred'),
        kwargs.get('translator_name', 'google'),
        kwargs.get('target_lang', 'zh-CN')
    )
    
    # Combine all pages into one PDF with compression
    output_path = kwargs.get('output_path', 'output.pdf')
    for trans_doc in translated_pages:
        output_doc.insert_pdf(trans_doc)
    
    # Save with compression options
    output_doc.save(
        output_path,
        garbage=4,
        deflate=True,
        clean=True,
        linear=True
    )
    
    return output_doc

def init_session_state():
    """Initialize session state variables"""
    if 'current_page' not in st.session_state:
        st.session_state.current_page = 0
    if 'translation_started' not in st.session_state:
        st.session_state.translation_started = True
    if 'all_translated' not in st.session_state:
        st.session_state.all_translated = False
    if 'translated_doc' not in st.session_state:
        st.session_state.translated_doc = None
    if 'previous_file' not in st.session_state:
        st.session_state.previous_file = None
    if 'api_settings' not in st.session_state:
        st.session_state.api_settings = {}

def main():
    st.set_page_config(layout="wide", page_title="PDF Translator for Human")
    st.title("PDF Translator for Human")

    # Initialize session state
    init_session_state()

    # Sidebar configuration
    with st.sidebar:
        st.header("Settings")
        
        uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
        
        # Reset session state when a new file is uploaded
        if uploaded_file is not None and (st.session_state.previous_file is None or 
                                        uploaded_file.name != st.session_state.previous_file):
            st.session_state.current_page = 0
            st.session_state.translation_started = True
            st.session_state.all_translated = False
            st.session_state.translated_doc = None
            st.session_state.previous_file = uploaded_file.name
            st.rerun()
            
        # Add source language selection
        source_lang_name = st.selectbox(
            "Source Language",
            options=list(SOURCE_LANGUAGE_OPTIONS.keys()),
            index=0  # Default to English
        )
        source_lang = SOURCE_LANGUAGE_OPTIONS[source_lang_name]
        
        pages_per_load = st.number_input(
            "Pages per load",
            min_value=1,
            max_value=5,
            value=DEFAULT_PAGES_PER_LOAD
        )
        
        text_color = st.selectbox(
            "Translation Color",
            options=list(COLOR_MAP.keys()),
            index=0
        )
        
        target_lang = st.selectbox(
            "Target Language",
            options=list(LANGUAGE_OPTIONS.keys()),
            index=0
        )
        target_lang_code = LANGUAGE_OPTIONS[target_lang]
        
        # Add translator selection
        st.subheader("Translator Settings")
        translator_type = st.radio(
            "Translator",
            options=["Google", "OpenAI Compatible"],
            index=0 if TRANSLATOR_CONFIG["type"] == "Google" else 1
        )
        
        # API Configuration based on translator selection
        if translator_type == "OpenAI Compatible":
            api_key = st.text_input(
                "API Key",
                value=TRANSLATOR_CONFIG["openai"]["default_api_key"],
                type="password"
            )
            api_base = st.text_input(
                "API Base URL",
                value=TRANSLATOR_CONFIG["openai"]["default_api_base"]
            )
            model = st.text_input(
                "Model Name",
                value=TRANSLATOR_CONFIG["openai"]["default_model"]
            )
            
            # Store API settings
            st.session_state.api_settings.update({
                'api_key': api_key,
                'api_base': api_base,
                'model': model
            })
        else:  # Google Translator
            # No configuration needed for Google Translator
            st.session_state.api_settings.update({
                'api_base': TRANSLATOR_CONFIG["google"]["default_api_base"]
            })

    # Main content area
    if uploaded_file is not None:
        doc_bytes = uploaded_file.read()
        doc = pymupdf.open(stream=doc_bytes)
        
        # Create two columns for side-by-side display
        col1, col2 = st.columns(2)
        
        # Display original pages
        with col1:
            st.header("Original")
            for page_num in range(st.session_state.current_page,
                                min(st.session_state.current_page + pages_per_load, doc.page_count)):
                page = doc[page_num]
                pix = get_page_image(page)
                st.image(pix.tobytes(), caption=f"Page {page_num + 1}", use_container_width=True)
        
        # Translation column
        with col2:
            st.header("Translated")
            
            try:
                # Initialize translator based on user selection
                if translator_type == "Google":
                    translator = GoogleTranslator(
                        source=source_lang,
                        target=target_lang_code
                    )
                else:
                    translator = OpenAICompatibleTranslator(
                        source=source_lang,
                        target=target_lang_code,
                        api_key=st.session_state.api_settings.get('api_key'),
                        base_url=st.session_state.api_settings.get('api_base'),
                        model=st.session_state.api_settings.get('model')
                    )

                # Translate current batch of pages
                translated_pages = translate_pdf_pages(
                    doc,
                    doc_bytes,
                    st.session_state.current_page,
                    pages_per_load,
                    translator,
                    text_color,
                    translator_type,
                    target_lang_code
                )
                
                # Display translated pages
                for i, trans_doc in enumerate(translated_pages):
                    page = trans_doc[0]
                    pix = get_page_image(page)
                    st.image(pix.tobytes(), caption=f"Page {st.session_state.current_page + i + 1}", use_container_width=True)
            
            except Exception as e:
                st.error(f"Translation error: {str(e)}")
                logging.error(f"Translation error: {str(e)}")
                return

        # Navigation and action buttons
        st.markdown("---")  # Add a separator
        button_col1, button_col2, button_col3, button_col4 = st.columns(4)
        
        # Previous Pages button
        with button_col1:
            if st.session_state.current_page > 0:
                if st.button("Previous Pages", use_container_width=True):
                    st.session_state.current_page = max(0, st.session_state.current_page - pages_per_load)
                    st.rerun()
            else:
                st.button("Previous Pages", disabled=True, use_container_width=True)
        
        # Next Pages button
        with button_col2:
            if st.session_state.current_page + pages_per_load < doc.page_count:
                if st.button("Next Pages", use_container_width=True):
                    st.session_state.current_page = min(
                        doc.page_count - 1,
                        st.session_state.current_page + pages_per_load
                    )
                    st.rerun()
            else:
                st.button("Next Pages", disabled=True, use_container_width=True)
        
        # Translate All button
        with button_col3:
            if st.button("Translate All", 
                        disabled=st.session_state.all_translated,
                        use_container_width=True):
                try:
                    # Initialize translator based on user selection
                    if translator_type == "Google":
                        translator = GoogleTranslator(
                            source=source_lang,
                            target=target_lang_code
                        )
                    else:
                        translator = OpenAICompatibleTranslator(
                            source=source_lang,
                            target=target_lang_code,
                            api_key=st.session_state.api_settings.get('api_key'),
                            base_url=st.session_state.api_settings.get('api_base'),
                            model=st.session_state.api_settings.get('model')
                        )

                    # Translate all pages
                    output_doc = pymupdf.open()
                    output_path = f"translated_{uploaded_file.name}"
                    output_doc = translate_all_pages(
                        doc,
                        output_doc,
                        translator,
                        st.empty(),
                        pages_per_load,
                        text_color=text_color,
                        translator_name=translator_type,
                        target_lang=target_lang_code,
                        output_path=output_path
                    )
                    
                    st.session_state.all_translated = True
                    st.session_state.translated_doc = output_path
                    st.rerun()
                except Exception as e:
                    st.error(f"Translation error: {str(e)}")
                    logging.error(f"Translation error: {str(e)}")
                    return
        
        # Download button
        with button_col4:
            if not st.session_state.all_translated:
                st.markdown(
                    """
                    <div title="You can download the translated file after all content has been translated">
                        <button style="width: 100%" disabled>Download</button>
                    </div>
                    """,
                    unsafe_allow_html=True
                )
            else:
                with open(st.session_state.translated_doc, "rb") as file:
                    st.download_button(
                        "Download",
                        file,
                        file_name=f"translated_{uploaded_file.name}",
                        mime="application/pdf",
                        use_container_width=True
                    )
    else:
        st.info("Please upload a PDF file to begin translation")


    # 使用Google翻译(默认):
    # streamlit run app.py

    # 使用Google翻译并指定API base:
    # streamlit run app.py --translator google --api-base https://translate.googleapis.com

    # 使用OpenAI兼容模型:
    # python app.py --translator openai --model default_model --api-key sk-xxx --api-base http://localhost:8080/v1

    # 使用OpenAI翻译并指定API base:
    # python app.py --translator openai --api-base https://api.openai.com/v1 --model gpt-4o-mini --api-key sk-xxx


if __name__ == "__main__":
    args = parse_args()
    update_translator_config(args)
    main()