|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
from huggingface_hub import login |
|
import gc |
|
from config import logger, LORA_CONFIGS |
|
|
|
|
|
if not os.environ.get("HUGGINGFACEHUB_API_TOKEN"): |
|
logger.error("Hugging Face API token is not set. Please set the HUGGINGFACEHUB_API_TOKEN environment variable.") |
|
raise ValueError("Hugging Face API token is not set. Please set the HUGGINGFACEHUB_API_TOKEN environment variable.") |
|
|
|
|
|
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.environ.get("HUGGINGFACEHUB_API_TOKEN") |
|
|
|
|
|
login(os.environ.get("HUGGINGFACEHUB_API_TOKEN")) |
|
|
|
class ModelHandler: |
|
def __init__(self): |
|
self.model = None |
|
self.tokenizer = None |
|
self.current_model_id = None |
|
|
|
def load_model(self, model_id, chatbot_state): |
|
"""Load the model, tokenizer, and apply LoRA adapter for the given model ID.""" |
|
try: |
|
logger.info(f"Loading model: {model_id}") |
|
print(f"Changing to model: {model_id}") |
|
self.clear_model() |
|
|
|
if model_id not in LORA_CONFIGS: |
|
raise ValueError(f"Invalid model ID: {model_id}") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
base_model_name = LORA_CONFIGS[model_id]["base_model"] |
|
lora_adapter_name = LORA_CONFIGS[model_id]["lora_adapter"] |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
base_model_name, |
|
trust_remote_code=True |
|
) |
|
self.tokenizer.use_default_system_prompt = False |
|
|
|
if self.tokenizer.pad_token is None or self.tokenizer.pad_token == self.tokenizer.eos_token: |
|
self.tokenizer.pad_token = self.tokenizer.unk_token or "<pad>" |
|
logger.info(f"Set pad_token to {self.tokenizer.pad_token}") |
|
|
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
base_model_name, |
|
torch_dtype=torch.float16, |
|
device_map=device, |
|
trust_remote_code=True |
|
) |
|
|
|
self.model = PeftModel.from_pretrained(self.model, lora_adapter_name) |
|
self.model.eval() |
|
self.model.config.pad_token_id = self.tokenizer.pad_token_id |
|
|
|
self.current_model_id = model_id |
|
chatbot_state = [] |
|
return f"Successfully loaded model: {model_id} with LoRA adapter {lora_adapter_name}", chatbot_state |
|
except Exception as e: |
|
logger.error(f"Failed to load model or tokenizer: {str(e)}") |
|
return f"Error: Failed to load model {model_id}: {str(e)}", chatbot_state |
|
|
|
def clear_model(self): |
|
"""Clear the current model and tokenizer from memory.""" |
|
if self.model is not None: |
|
print("Clearing previous model from RAM/VRAM...") |
|
del self.model |
|
del self.tokenizer |
|
self.model = None |
|
self.tokenizer = None |
|
gc.collect() |
|
torch.cuda.empty_cache() if torch.cuda.is_available() else None |
|
print("Memory cleared successfully.") |