danhtran2mind's picture
Update gradio_app/model_handler.py
9bd8a79 verified
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer
# from peft import PeftModel
# import gc
# from config import logger, LORA_CONFIGS
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from huggingface_hub import login
import gc
from config import logger, LORA_CONFIGS
# Check for Hugging Face API token
if not os.environ.get("HUGGINGFACEHUB_API_TOKEN"):
logger.error("Hugging Face API token is not set. Please set the HUGGINGFACEHUB_API_TOKEN environment variable.")
raise ValueError("Hugging Face API token is not set. Please set the HUGGINGFACEHUB_API_TOKEN environment variable.")
# Set the Hugging Face API token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
# Initialize API
login(os.environ.get("HUGGINGFACEHUB_API_TOKEN"))
class ModelHandler:
def __init__(self):
self.model = None
self.tokenizer = None
self.current_model_id = None
def load_model(self, model_id, chatbot_state):
"""Load the model, tokenizer, and apply LoRA adapter for the given model ID."""
try:
logger.info(f"Loading model: {model_id}")
print(f"Changing to model: {model_id}")
self.clear_model()
if model_id not in LORA_CONFIGS:
raise ValueError(f"Invalid model ID: {model_id}")
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model_name = LORA_CONFIGS[model_id]["base_model"]
lora_adapter_name = LORA_CONFIGS[model_id]["lora_adapter"]
self.tokenizer = AutoTokenizer.from_pretrained(
base_model_name,
trust_remote_code=True
)
self.tokenizer.use_default_system_prompt = False
if self.tokenizer.pad_token is None or self.tokenizer.pad_token == self.tokenizer.eos_token:
self.tokenizer.pad_token = self.tokenizer.unk_token or "<pad>"
logger.info(f"Set pad_token to {self.tokenizer.pad_token}")
self.model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
device_map=device,
trust_remote_code=True
)
self.model = PeftModel.from_pretrained(self.model, lora_adapter_name)
self.model.eval()
self.model.config.pad_token_id = self.tokenizer.pad_token_id
self.current_model_id = model_id
chatbot_state = []
return f"Successfully loaded model: {model_id} with LoRA adapter {lora_adapter_name}", chatbot_state
except Exception as e:
logger.error(f"Failed to load model or tokenizer: {str(e)}")
return f"Error: Failed to load model {model_id}: {str(e)}", chatbot_state
def clear_model(self):
"""Clear the current model and tokenizer from memory."""
if self.model is not None:
print("Clearing previous model from RAM/VRAM...")
del self.model
del self.tokenizer
self.model = None
self.tokenizer = None
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
print("Memory cleared successfully.")