Update gradio_app/model_handler.py
Browse files- gradio_app/model_handler.py +83 -64
gradio_app/model_handler.py
CHANGED
@@ -1,65 +1,84 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from peft import PeftModel
|
4 |
-
import gc
|
5 |
-
from config import logger, LORA_CONFIGS
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
self.
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
self.
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
print("Memory cleared successfully.")
|
|
|
1 |
+
# import torch
|
2 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
# from peft import PeftModel
|
4 |
+
# import gc
|
5 |
+
# from config import logger, LORA_CONFIGS
|
6 |
+
|
7 |
+
import os
|
8 |
+
import torch
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
+
from peft import PeftModel
|
11 |
+
from huggingface_hub import login
|
12 |
+
import gc
|
13 |
+
from config import logger, LORA_CONFIGS
|
14 |
+
|
15 |
+
# Check for Hugging Face API token
|
16 |
+
if not os.environ.get("HUGGINGFACEHUB_API_TOKEN"):
|
17 |
+
logger.error("Hugging Face API token is not set. Please set the HUGGINGFACEHUB_API_TOKEN environment variable.")
|
18 |
+
raise ValueError("Hugging Face API token is not set. Please set the HUGGINGFACEHUB_API_TOKEN environment variable.")
|
19 |
+
|
20 |
+
# Set the Hugging Face API token
|
21 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
22 |
+
|
23 |
+
# Initialize API
|
24 |
+
login(os.environ.get("HUGGINGFACEHUB_API_TOKEN"))
|
25 |
+
|
26 |
+
class ModelHandler:
|
27 |
+
def __init__(self):
|
28 |
+
self.model = None
|
29 |
+
self.tokenizer = None
|
30 |
+
self.current_model_id = None
|
31 |
+
|
32 |
+
def load_model(self, model_id, chatbot_state):
|
33 |
+
"""Load the model, tokenizer, and apply LoRA adapter for the given model ID."""
|
34 |
+
try:
|
35 |
+
logger.info(f"Loading model: {model_id}")
|
36 |
+
print(f"Changing to model: {model_id}")
|
37 |
+
self.clear_model()
|
38 |
+
|
39 |
+
if model_id not in LORA_CONFIGS:
|
40 |
+
raise ValueError(f"Invalid model ID: {model_id}")
|
41 |
+
|
42 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
+
base_model_name = LORA_CONFIGS[model_id]["base_model"]
|
44 |
+
lora_adapter_name = LORA_CONFIGS[model_id]["lora_adapter"]
|
45 |
+
|
46 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
47 |
+
base_model_name,
|
48 |
+
trust_remote_code=True
|
49 |
+
)
|
50 |
+
self.tokenizer.use_default_system_prompt = False
|
51 |
+
|
52 |
+
if self.tokenizer.pad_token is None or self.tokenizer.pad_token == self.tokenizer.eos_token:
|
53 |
+
self.tokenizer.pad_token = self.tokenizer.unk_token or "<pad>"
|
54 |
+
logger.info(f"Set pad_token to {self.tokenizer.pad_token}")
|
55 |
+
|
56 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
57 |
+
base_model_name,
|
58 |
+
torch_dtype=torch.float16,
|
59 |
+
device_map=device,
|
60 |
+
trust_remote_code=True
|
61 |
+
)
|
62 |
+
|
63 |
+
self.model = PeftModel.from_pretrained(self.model, lora_adapter_name)
|
64 |
+
self.model.eval()
|
65 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
66 |
+
|
67 |
+
self.current_model_id = model_id
|
68 |
+
chatbot_state = []
|
69 |
+
return f"Successfully loaded model: {model_id} with LoRA adapter {lora_adapter_name}", chatbot_state
|
70 |
+
except Exception as e:
|
71 |
+
logger.error(f"Failed to load model or tokenizer: {str(e)}")
|
72 |
+
return f"Error: Failed to load model {model_id}: {str(e)}", chatbot_state
|
73 |
+
|
74 |
+
def clear_model(self):
|
75 |
+
"""Clear the current model and tokenizer from memory."""
|
76 |
+
if self.model is not None:
|
77 |
+
print("Clearing previous model from RAM/VRAM...")
|
78 |
+
del self.model
|
79 |
+
del self.tokenizer
|
80 |
+
self.model = None
|
81 |
+
self.tokenizer = None
|
82 |
+
gc.collect()
|
83 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
84 |
print("Memory cleared successfully.")
|