Backend / app /main.py
Damien Benveniste
corrected
275d03f
raw
history blame
3.88 kB
from langchain_core.runnables import Runnable
from langchain_core.callbacks import BaseCallbackHandler
from fastapi import FastAPI, Request, Depends
from sse_starlette.sse import EventSourceResponse
from sqlalchemy.orm import Session
from langserve.serialization import WellKnownLCSerializer
from typing import Any, List
import crud, models, schemas
from database import SessionLocal, engine
from chains import simple_chain, formatted_chain, history_chain, rag_chain
from prompts import format_chat_history
from callbacks import LogResponseCallback
models.Base.metadata.create_all(bind=engine)
app = FastAPI()
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
async def generate_stream(input_data: schemas.BaseModel, runnable: Runnable, callbacks: List[BaseCallbackHandler]=[]):
for output in runnable.stream(input_data.dict(), config={"callbacks": callbacks}):
data = WellKnownLCSerializer().dumps(output).decode("utf-8")
yield {'data': data, "event": "data"}
yield {"event": "end"}
@app.get("/")
def greet_json():
return {"Hello": "World!"}
@app.post("/simple/stream")
async def simple_stream(request: Request):
data = await request.json()
user_question = schemas.UserQuestion(**data['input'])
return EventSourceResponse(generate_stream(user_question, simple_chain))
@app.post("/formatted/stream")
async def formatted_stream(request: Request):
data = await request.json()
user_question = schemas.UserQuestion(**data['input'])
return EventSourceResponse(generate_stream(user_question, formatted_chain))
@app.post("/history/stream")
async def history_stream(request: Request, db: Session = Depends(get_db)):
data = await request.json()
user_request = schemas.UserRequest(**data['input'])
chat_history = crud.get_user_chat_history(db=db, username=user_request.username)
message = schemas.MessageBase(message=user_request.question, type='User')
crud.add_message(db, message, user_request.username)
history_input = schemas.HistoryInput(
question=user_request.question,
chat_history=format_chat_history(chat_history)
)
return EventSourceResponse(generate_stream(
history_input,
history_chain,
[LogResponseCallback(user_request, db)]
))
@app.post("/rag/stream")
async def rag_stream(request: Request, db: Session = Depends(get_db)):
data = await request.json()
user_request = schemas.UserRequest(**data['input'])
chat_history = crud.get_user_chat_history(db=db, username=user_request.username)
message = schemas.MessageBase(message=user_request.question, type='User')
crud.add_message(db, message, user_request.username)
rag_input = schemas.RagInput(
question=user_request.question,
chat_history=format_chat_history(chat_history),
)
return EventSourceResponse(generate_stream(
rag_input,
rag_chain,
[LogResponseCallback(user_request, db)]
))
@app.post("/filtered_rag/stream")
async def filtered_rag_stream(request: Request, db: Session = Depends(get_db)):
data = await request.json()
print(data)
user_request = schemas.UserRequest(**data['input'])
chat_history = crud.get_user_chat_history(db=db, username=user_request.username)
message = schemas.MessageBase(message=user_request.question, type='User')
crud.add_message(db, message, user_request.username)
rag_input = schemas.RagInput(
question=user_request.question,
chat_history=format_chat_history(chat_history),
hybrid_search=True
)
return EventSourceResponse(generate_stream(
rag_input,
rag_chain,
[LogResponseCallback(user_request, db)]
))
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="localhost", reload=True, port=8002)