File size: 3,883 Bytes
d038098
 
 
 
 
 
 
 
 
275d03f
36118aa
d038098
36118aa
d038098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d0492c
d038098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from langchain_core.runnables import Runnable
from langchain_core.callbacks import BaseCallbackHandler
from fastapi import FastAPI, Request, Depends
from sse_starlette.sse import EventSourceResponse
from sqlalchemy.orm import Session
from langserve.serialization import WellKnownLCSerializer
from typing import Any, List
import crud, models, schemas
from database import SessionLocal, engine
from chains import simple_chain, formatted_chain, history_chain, rag_chain
from prompts import format_chat_history
from callbacks import LogResponseCallback


models.Base.metadata.create_all(bind=engine)

app = FastAPI()

def get_db():
    db = SessionLocal()
    try:
        yield db
    finally:
        db.close()


async def generate_stream(input_data: schemas.BaseModel, runnable: Runnable, callbacks: List[BaseCallbackHandler]=[]):
    for output in runnable.stream(input_data.dict(), config={"callbacks": callbacks}): 
        data = WellKnownLCSerializer().dumps(output).decode("utf-8")
        yield {'data': data, "event": "data"} 
    yield {"event": "end"}


@app.get("/")
def greet_json():
    return {"Hello": "World!"}


@app.post("/simple/stream")
async def simple_stream(request: Request):
    data = await request.json()
    user_question = schemas.UserQuestion(**data['input'])
    return EventSourceResponse(generate_stream(user_question, simple_chain))


@app.post("/formatted/stream")
async def formatted_stream(request: Request):
    data = await request.json()
    user_question = schemas.UserQuestion(**data['input'])
    return EventSourceResponse(generate_stream(user_question, formatted_chain))


@app.post("/history/stream")
async def history_stream(request: Request, db: Session = Depends(get_db)):  
    data = await request.json()
    user_request = schemas.UserRequest(**data['input'])
    chat_history = crud.get_user_chat_history(db=db, username=user_request.username)
    message = schemas.MessageBase(message=user_request.question, type='User')
    crud.add_message(db, message, user_request.username)

    history_input = schemas.HistoryInput(
        question=user_request.question,
        chat_history=format_chat_history(chat_history)
    )

    return EventSourceResponse(generate_stream(
        history_input, 
        history_chain,
        [LogResponseCallback(user_request, db)]
    ))


@app.post("/rag/stream")
async def rag_stream(request: Request, db: Session = Depends(get_db)):  
    data = await request.json()
    user_request = schemas.UserRequest(**data['input'])
    chat_history = crud.get_user_chat_history(db=db, username=user_request.username)
    message = schemas.MessageBase(message=user_request.question, type='User')
    crud.add_message(db, message, user_request.username)

    rag_input = schemas.RagInput(
        question=user_request.question,
        chat_history=format_chat_history(chat_history),
    )

    return EventSourceResponse(generate_stream(
        rag_input, 
        rag_chain,
        [LogResponseCallback(user_request, db)]
    ))

@app.post("/filtered_rag/stream")
async def filtered_rag_stream(request: Request, db: Session = Depends(get_db)):  
    data = await request.json()
    print(data)
    user_request = schemas.UserRequest(**data['input'])
    chat_history = crud.get_user_chat_history(db=db, username=user_request.username)
    message = schemas.MessageBase(message=user_request.question, type='User')
    crud.add_message(db, message, user_request.username)

    rag_input = schemas.RagInput(
        question=user_request.question,
        chat_history=format_chat_history(chat_history),
        hybrid_search=True
    )

    return EventSourceResponse(generate_stream(
        rag_input, 
        rag_chain,
        [LogResponseCallback(user_request, db)]
    ))




if __name__ == "__main__":
    import uvicorn
    uvicorn.run("main:app", host="localhost", reload=True,  port=8002)