crystalchen's picture
Update app.py
f49dfa1 verified
## Set Environment
import os
from pdf2image import convert_from_path
import cv2
import base64
import numpy as np
import numpy as np
from PIL import Image
import json
from anthropic import Anthropic, Client
import gradio as gr
## Set Environment
os.system('python -m venv env')
os.system('source env/bin/activate')
## Install poppler in os
import os
os.system('apt-get update')
os.system('sudo apt-get install poppler-utils')
## The rest of your app.py code goes here
def get_base64_encorded_image(image_path):
with open(image_path, "rb") as image_file:
binary_data = image_file.read()
base64_encorded_data = base64.b64encode(binary_data)
base64_string = base64_encorded_data.decode('utf-8')
return base64_string
## Process pdf
def convert_pdf_to_image(pdf_path):
# Convert PDF to images
pages = convert_from_path(pdf_path, dpi=400)
# Save images as PNG files
for i, page in enumerate(pages):
page.save(f'page_{i}.png', 'PNG')
print(f"Converted {len(pages)} pages to images.")
return pages
## Image process Subprocess - De-stamp
def destamp_image(img_path):
bgr_img = cv2.imread(img_path)
hsv_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2HSV)
# Convert the BGR image to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# HSV ragne: (0-180, 0-255, 0-120)
# for character black color:
# H: 0-180,
# S: 0-255 ,
# V: 0-120 ,
lower_black = np.array([0,0,0])
upper_black = np.array([180,255,120])
mask = cv2.inRange(hsv_img, lower_black, upper_black)
deRed_img = ~mask # Single channel image
# thresholding -2
ret, threshold_img_2 = cv2.threshold(deRed_img, 120, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# Desired shape: (x, y, 1)
new_shape = (threshold_img_2.shape[0], threshold_img_2.shape[1], 1)
# Resize using numpy.resize()
result_img = np.resize(threshold_img_2, new_shape)
print(f"result_img.shape: {result_img.shape}")
#cv2.imshow(result_img)
#save result_img
result_filepath="result_img_0.png"
cv2.imwrite(result_filepath, result_img)
return result_filepath
def extract_image_table(image_path):
# extract table information
response = {}
response = extract_table_info(image_path)
# Get text element from response
check_response(response)
# Extract response.content[0].text
json_data = extract_json(response) #type(json_data) = "dict"
print(f"json_data: {json_data}")
return json_data
## Extract Table Information
def extract_table_info(image_path):
my_api_key = os.getenv('ANTHROPIC_API_KEY')
# Claude
client = Anthropic(api_key=my_api_key) # Pass the API key here
MODEL_NAME = "claude-3-5-sonnet-20240620"
#Do ascending sort with index of value of "代碼" for all the rows in each section. If there is "X" or "x" in "代碼", treat it as "9".
message_list = [
{
"role": "user",
"content": [
{"type": "image", "source": {"type": "base64", "media_type": "image/png", "data": get_base64_encorded_image(image_path)}},
{
"type": "text",
"text": """
You are analyzing an Financial Statement in traditional Chinese.
Please extract all the information of the statement image, keep the context in Traditional Chinese without translation.
Extract information row by row, and cell by cell.
Keep document title, header, date, currency, section header, summary, footer, ... as part of the information.
OCR all the cells precisely with the best accuracy. Any Chinese character, if you can not make the best guess, please return "?". Do not ignore it.
Do not do any correction with the content of the cell related with "代碼", even it is not 100% correct from your experience. Keep as what it is.
Makd sure the length of the string of each cell is same as the image.
Save all the information as a markdown table.
Keep alignment of each column with the image.
Repsonse as below structure:
<mark>
...
...
...
</mark>
"""
}
]
}
]
# Update how the API is called
response = client.messages.create(
model=MODEL_NAME,
max_tokens=3072, # limit the amount of response information
messages=message_list,
temperature=0.6,
extra_headers={"anthropic-beta": "max-tokens-3-5-sonnet-2024-07-15"} # Changed to a dictionary
)
tokens = response.usage.output_tokens
print(f"Generated Tokens: {tokens}")
print(f"Response: {response}")
return response
## Check Response
def check_response(response):
# Check the type and content of the response
print(type(response.content))
print(response.content)
# Assuming the text content is in the first element of the list
if isinstance(response.content, list) and response.content:
content_text = response.content[0].text
#print(json.dumps(content_text, sort_keys=True, indent=4))
else:
print("Unexpected response format. Unable to extract text.")
return None
## Extract markdown data
def extract_markdown(response):
response_text = response.content[0].text # Access the 'text' attribute of the TextBlock object
# Try to find the start and end of the JSON object more robustly
# skip <json>
mark_start = response_text.find("<mark>")+6 # Skip the <json> tag
mark_end = response_text.find("</mark>") # Include the closing brace
print(f"mark_start: {mark_start}")
print(f"mark_end: {mark_end}")
# Check if valid start and end indices were found
if mark_start >= 0 and mark_end > mark_start:
mark_data = response_text[mark_start:mark_end]
print(f"mark_data: {mark_data}")
return mark_data
else:
print("Could not find valid Markdown object in response.")
return
## Extract Json data
def extract_json(response):
response_text = response.content[0].text # Access the 'text' attribute of the TextBlock object
# Try to find the start and end of the JSON object more robustly
# skip <json>
json_start = response_text.find("<json>")+6 # Skip the <json> tag
json_end = response_text.rfind("</json>") # Include the closing brace
# Check if valid start and end indices were found
if json_start >= 0 and json_end > json_start:
try:
return json.loads(response_text[json_start:json_end])
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
print(f"Problematic JSON string: {response_text[json_start+1:json_end]}")
return {response_text[json_start+1:json_end]}
else:
print("Could not find valid JSON object in response.")
return
## Convert json to Dataframe
## Convert to csv
## Process PDF
def pipeline(pdf_path):
pages = convert_pdf_to_image(pdf_path)
print(f"pages: {pages}")
destamp_img = destamp_image("page_0.png")
response = {}
response = extract_table_info(destamp_img)
check_response(response)
mark_data = extract_markdown(response)
#json_data = extract_json(response)
return len(pages), destamp_img, mark_data
## Gradio Interface
title = "Demo: Financial Statement(PDF) information Extraction - Traditional Chinese"
description = """Demo pdf, either editable or scanned image, information extraction for Traditional Chinese without OCR"""
examples = [['text_pdf.pdf'], ['image_pdf.pdf']]
pdf_file = gr.File(label="Upload PDF", type="filepath")
pages = gr.File(label="Pages", type="filepath")
num_pages = gr.Number(label="Number of Pages")
destamp_img = gr.Image(type="numpy", label="De-stamped Image")
#json_data = gr.JSON(label="JSON Data")
mark_data = gr.Markdown(label="Markdown Data")
app = gr.Interface(fn=pipeline,
inputs=pdf_file,
outputs=[num_pages, destamp_img, mark_data],
title=title,
description=description,
examples=examples)
app.queue()
app.launch(debug=True, share=True)
#app.launch()