Spaces:
Runtime error
Runtime error
File size: 8,220 Bytes
e9116ec 735fe06 5c6b19b 97c964c f498ef6 97c964c e9116ec 735fe06 e9116ec 97c964c 4a96f2b 97c964c 4a96f2b 97c964c 4a96f2b 97c964c 9378af1 97c964c 9378af1 97c964c f49dfa1 97c964c f49dfa1 97c964c f49dfa1 97c964c f49dfa1 97c964c f49dfa1 97c964c f49dfa1 97c964c f49dfa1 97c964c f49dfa1 97c964c f49dfa1 97c964c f49dfa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
## Set Environment
import os
from pdf2image import convert_from_path
import cv2
import base64
import numpy as np
import numpy as np
from PIL import Image
import json
from anthropic import Anthropic, Client
import gradio as gr
## Set Environment
os.system('python -m venv env')
os.system('source env/bin/activate')
## Install poppler in os
import os
os.system('apt-get update')
os.system('sudo apt-get install poppler-utils')
## The rest of your app.py code goes here
def get_base64_encorded_image(image_path):
with open(image_path, "rb") as image_file:
binary_data = image_file.read()
base64_encorded_data = base64.b64encode(binary_data)
base64_string = base64_encorded_data.decode('utf-8')
return base64_string
## Process pdf
def convert_pdf_to_image(pdf_path):
# Convert PDF to images
pages = convert_from_path(pdf_path, dpi=400)
# Save images as PNG files
for i, page in enumerate(pages):
page.save(f'page_{i}.png', 'PNG')
print(f"Converted {len(pages)} pages to images.")
return pages
## Image process Subprocess - De-stamp
def destamp_image(img_path):
bgr_img = cv2.imread(img_path)
hsv_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2HSV)
# Convert the BGR image to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# HSV ragne: (0-180, 0-255, 0-120)
# for character black color:
# H: 0-180,
# S: 0-255 ,
# V: 0-120 ,
lower_black = np.array([0,0,0])
upper_black = np.array([180,255,120])
mask = cv2.inRange(hsv_img, lower_black, upper_black)
deRed_img = ~mask # Single channel image
# thresholding -2
ret, threshold_img_2 = cv2.threshold(deRed_img, 120, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# Desired shape: (x, y, 1)
new_shape = (threshold_img_2.shape[0], threshold_img_2.shape[1], 1)
# Resize using numpy.resize()
result_img = np.resize(threshold_img_2, new_shape)
print(f"result_img.shape: {result_img.shape}")
#cv2.imshow(result_img)
#save result_img
result_filepath="result_img_0.png"
cv2.imwrite(result_filepath, result_img)
return result_filepath
def extract_image_table(image_path):
# extract table information
response = {}
response = extract_table_info(image_path)
# Get text element from response
check_response(response)
# Extract response.content[0].text
json_data = extract_json(response) #type(json_data) = "dict"
print(f"json_data: {json_data}")
return json_data
## Extract Table Information
def extract_table_info(image_path):
my_api_key = os.getenv('ANTHROPIC_API_KEY')
# Claude
client = Anthropic(api_key=my_api_key) # Pass the API key here
MODEL_NAME = "claude-3-5-sonnet-20240620"
#Do ascending sort with index of value of "代碼" for all the rows in each section. If there is "X" or "x" in "代碼", treat it as "9".
message_list = [
{
"role": "user",
"content": [
{"type": "image", "source": {"type": "base64", "media_type": "image/png", "data": get_base64_encorded_image(image_path)}},
{
"type": "text",
"text": """
You are analyzing an Financial Statement in traditional Chinese.
Please extract all the information of the statement image, keep the context in Traditional Chinese without translation.
Extract information row by row, and cell by cell.
Keep document title, header, date, currency, section header, summary, footer, ... as part of the information.
OCR all the cells precisely with the best accuracy. Any Chinese character, if you can not make the best guess, please return "?". Do not ignore it.
Do not do any correction with the content of the cell related with "代碼", even it is not 100% correct from your experience. Keep as what it is.
Makd sure the length of the string of each cell is same as the image.
Save all the information as a markdown table.
Keep alignment of each column with the image.
Repsonse as below structure:
<mark>
...
...
...
</mark>
"""
}
]
}
]
# Update how the API is called
response = client.messages.create(
model=MODEL_NAME,
max_tokens=3072, # limit the amount of response information
messages=message_list,
temperature=0.6,
extra_headers={"anthropic-beta": "max-tokens-3-5-sonnet-2024-07-15"} # Changed to a dictionary
)
tokens = response.usage.output_tokens
print(f"Generated Tokens: {tokens}")
print(f"Response: {response}")
return response
## Check Response
def check_response(response):
# Check the type and content of the response
print(type(response.content))
print(response.content)
# Assuming the text content is in the first element of the list
if isinstance(response.content, list) and response.content:
content_text = response.content[0].text
#print(json.dumps(content_text, sort_keys=True, indent=4))
else:
print("Unexpected response format. Unable to extract text.")
return None
## Extract markdown data
def extract_markdown(response):
response_text = response.content[0].text # Access the 'text' attribute of the TextBlock object
# Try to find the start and end of the JSON object more robustly
# skip <json>
mark_start = response_text.find("<mark>")+6 # Skip the <json> tag
mark_end = response_text.find("</mark>") # Include the closing brace
print(f"mark_start: {mark_start}")
print(f"mark_end: {mark_end}")
# Check if valid start and end indices were found
if mark_start >= 0 and mark_end > mark_start:
mark_data = response_text[mark_start:mark_end]
print(f"mark_data: {mark_data}")
return mark_data
else:
print("Could not find valid Markdown object in response.")
return
## Extract Json data
def extract_json(response):
response_text = response.content[0].text # Access the 'text' attribute of the TextBlock object
# Try to find the start and end of the JSON object more robustly
# skip <json>
json_start = response_text.find("<json>")+6 # Skip the <json> tag
json_end = response_text.rfind("</json>") # Include the closing brace
# Check if valid start and end indices were found
if json_start >= 0 and json_end > json_start:
try:
return json.loads(response_text[json_start:json_end])
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
print(f"Problematic JSON string: {response_text[json_start+1:json_end]}")
return {response_text[json_start+1:json_end]}
else:
print("Could not find valid JSON object in response.")
return
## Convert json to Dataframe
## Convert to csv
## Process PDF
def pipeline(pdf_path):
pages = convert_pdf_to_image(pdf_path)
print(f"pages: {pages}")
destamp_img = destamp_image("page_0.png")
response = {}
response = extract_table_info(destamp_img)
check_response(response)
mark_data = extract_markdown(response)
#json_data = extract_json(response)
return len(pages), destamp_img, mark_data
## Gradio Interface
title = "Demo: Financial Statement(PDF) information Extraction - Traditional Chinese"
description = """Demo pdf, either editable or scanned image, information extraction for Traditional Chinese without OCR"""
examples = [['text_pdf.pdf'], ['image_pdf.pdf']]
pdf_file = gr.File(label="Upload PDF", type="filepath")
pages = gr.File(label="Pages", type="filepath")
num_pages = gr.Number(label="Number of Pages")
destamp_img = gr.Image(type="numpy", label="De-stamped Image")
#json_data = gr.JSON(label="JSON Data")
mark_data = gr.Markdown(label="Markdown Data")
app = gr.Interface(fn=pipeline,
inputs=pdf_file,
outputs=[num_pages, destamp_img, mark_data],
title=title,
description=description,
examples=examples)
app.queue()
app.launch(debug=True, share=True)
#app.launch() |