GGUF_Model / app.py
contenteaseAI's picture
Update app.py
154bf62 verified
raw
history blame
6.8 kB
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
import gradio as gr
from huggingface_hub import hf_hub_download
import logging
import time
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
repo_id = "MaziyarPanahi/Meta-Llama-3.1-70B-Instruct-GGUF"
filename = "Meta-Llama-3.1-70B-Instruct.IQ1_M.gguf"
def chunk_text(text, chunk_size=5000):
"""
Splits the input text into chunks of specified size.
Args:
text (str): The input text to be chunked.
chunk_size (int): The size of each chunk in tokens.
Returns:
list: A list of text chunks.
"""
words = text.split()
chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
return chunks
try:
start_time = time.time()
logger.info("Downloading Model....")
hf_hub_download(
repo_id = repo_id ,
filename = filename,
local_dir="./model"
)
end_time = time.time()
logger.info(f"Download complete. Time taken : {end_time - start_time} seconds.")
except Exception as e:
logger.error(f"Unable to download Model : {e}")
raise
llm = None
@spaces.GPU(duration=120)
def respond(message, history, temperature, max_tokens):
"""
Generate a streaming response using the llama3-8b model with chunking.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface. - Not used.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
chat_template = MessagesFormatterType.LLAMA_3
global llm
start_time = time.time()
logging.info("Loading Model...")
if llm is None:
model = Llama(
model_path=f"model/{filename}",
flash_attn=True,
n_gpu_layers=-1,
n_batch=1,
n_ctx=8192,
last_n_tokens = 0
)
llm = model
end_time = time.time()
logger.info(f"Model Loaded. Time taken : {end_time - start_time} seconds.")
start_time = time.time()
logger.info("Loading Provider and Agent for the Llama Model....")
provider = LlamaCppPythonProvider(llm)
SYS_PROMPT ="""
Extract the following information from the given text:
Identify the specific areas where the work needs to be done and Add the furniture that has to be changed.
Do not specify the work that has to be done.
Format the extracted information in the following JSON structure:
{
"Area Type1": {
"Furnture1",
"Furnture2",
...
}
"Area Type2": {
"Furnture1",
"Furnture2",
...
}
}
Requirements:
1. Each area type (e.g., lobby, bar, etc.) should have its own node.
3. List the furniture on which the work needs to be performed without specifying the work or units of items.
4. Ignore any personal information or irrelevant details.
5. Follow the JSON pattern strictly and ensure clarity and accuracy in the extracted information.
Example:
Given the paragraph: "In the lobby, replace 5 light fixtures and remove 2 old carpets. In the bar,
install 3 new tables and remove 4 broken chairs."
The JSON output should be:
{
"Lobby": {
"Light fixtures"
"Old carpets"
},
"Bar": {
"New tables"
"Broken chairs"
}
}
}
Please ensure that the output JSON is well-structured and includes only relevant details about the work to be done.
"""
agent = LlamaCppAgent(
provider,
system_prompt=SYS_PROMPT,
predefined_messages_formatter_type=chat_template,
debug_output=False
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.max_tokens = max_tokens
settings.stream = True
end_time = time.time()
logger.info(f"Provider settings updated. Prompt Loaded.Time taken : {end_time - start_time} seconds.")
chunks = chunk_text(message)
responses = []
start_time = time.time()
logger.info("Generating responses...")
for chunk in chunks:
response = agent.get_chat_response(
chunk,
llm_sampling_settings=settings,
returns_streaming_generator = True, #generate streamer
print_output = False
)
responses.append(response)
logger.info(f"Responses generated. Time taken : {time.time() - start_time} seconds.")
output = ""
for response in responses:
for text in response:
output += text
yield output
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
</div>
'''
LICENSE = """
<p/>
---
For more information, visit our [website](https://contentease.ai).
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=respond,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.90, label="Temperature", render=False),
gr.Slider(minimum=128, maximum=2000, step=1, value=1500, label="Max new tokens", render=False),
]
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
try:
demo.launch(show_error=True, debug = True)
except Exception as e:
logger.error(f"Error launching Gradio demo: {e}")