Spaces:
Runtime error
Runtime error
File size: 6,795 Bytes
e715f4c 154bf62 e715f4c 10c9e58 e715f4c 280ec8b e715f4c 280ec8b e715f4c 280ec8b e715f4c 280ec8b e715f4c 9217d6f e715f4c 9217d6f e715f4c 9217d6f e715f4c 9217d6f e715f4c 9217d6f e715f4c ed5c12c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
import gradio as gr
from huggingface_hub import hf_hub_download
import logging
import time
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
repo_id = "MaziyarPanahi/Meta-Llama-3.1-70B-Instruct-GGUF"
filename = "Meta-Llama-3.1-70B-Instruct.IQ1_M.gguf"
def chunk_text(text, chunk_size=5000):
"""
Splits the input text into chunks of specified size.
Args:
text (str): The input text to be chunked.
chunk_size (int): The size of each chunk in tokens.
Returns:
list: A list of text chunks.
"""
words = text.split()
chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
return chunks
try:
start_time = time.time()
logger.info("Downloading Model....")
hf_hub_download(
repo_id = repo_id ,
filename = filename,
local_dir="./model"
)
end_time = time.time()
logger.info(f"Download complete. Time taken : {end_time - start_time} seconds.")
except Exception as e:
logger.error(f"Unable to download Model : {e}")
raise
llm = None
@spaces.GPU(duration=120)
def respond(message, history, temperature, max_tokens):
"""
Generate a streaming response using the llama3-8b model with chunking.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface. - Not used.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
chat_template = MessagesFormatterType.LLAMA_3
global llm
start_time = time.time()
logging.info("Loading Model...")
if llm is None:
model = Llama(
model_path=f"model/{filename}",
flash_attn=True,
n_gpu_layers=-1,
n_batch=1,
n_ctx=8192,
last_n_tokens = 0
)
llm = model
end_time = time.time()
logger.info(f"Model Loaded. Time taken : {end_time - start_time} seconds.")
start_time = time.time()
logger.info("Loading Provider and Agent for the Llama Model....")
provider = LlamaCppPythonProvider(llm)
SYS_PROMPT ="""
Extract the following information from the given text:
Identify the specific areas where the work needs to be done and Add the furniture that has to be changed.
Do not specify the work that has to be done.
Format the extracted information in the following JSON structure:
{
"Area Type1": {
"Furnture1",
"Furnture2",
...
}
"Area Type2": {
"Furnture1",
"Furnture2",
...
}
}
Requirements:
1. Each area type (e.g., lobby, bar, etc.) should have its own node.
3. List the furniture on which the work needs to be performed without specifying the work or units of items.
4. Ignore any personal information or irrelevant details.
5. Follow the JSON pattern strictly and ensure clarity and accuracy in the extracted information.
Example:
Given the paragraph: "In the lobby, replace 5 light fixtures and remove 2 old carpets. In the bar,
install 3 new tables and remove 4 broken chairs."
The JSON output should be:
{
"Lobby": {
"Light fixtures"
"Old carpets"
},
"Bar": {
"New tables"
"Broken chairs"
}
}
}
Please ensure that the output JSON is well-structured and includes only relevant details about the work to be done.
"""
agent = LlamaCppAgent(
provider,
system_prompt=SYS_PROMPT,
predefined_messages_formatter_type=chat_template,
debug_output=False
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.max_tokens = max_tokens
settings.stream = True
end_time = time.time()
logger.info(f"Provider settings updated. Prompt Loaded.Time taken : {end_time - start_time} seconds.")
chunks = chunk_text(message)
responses = []
start_time = time.time()
logger.info("Generating responses...")
for chunk in chunks:
response = agent.get_chat_response(
chunk,
llm_sampling_settings=settings,
returns_streaming_generator = True, #generate streamer
print_output = False
)
responses.append(response)
logger.info(f"Responses generated. Time taken : {time.time() - start_time} seconds.")
output = ""
for response in responses:
for text in response:
output += text
yield output
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
</div>
'''
LICENSE = """
<p/>
---
For more information, visit our [website](https://contentease.ai).
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=respond,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.90, label="Temperature", render=False),
gr.Slider(minimum=128, maximum=2000, step=1, value=1500, label="Max new tokens", render=False),
]
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
try:
demo.launch(show_error=True, debug = True)
except Exception as e:
logger.error(f"Error launching Gradio demo: {e}") |