File size: 6,795 Bytes
e715f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
154bf62
 
e715f4c
10c9e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e715f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280ec8b
 
 
 
 
 
 
 
e715f4c
 
 
 
 
 
280ec8b
 
 
e715f4c
 
 
 
 
 
 
 
 
280ec8b
 
e715f4c
 
280ec8b
 
e715f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9217d6f
 
 
 
e715f4c
 
9217d6f
 
 
 
e715f4c
9217d6f
e715f4c
 
9217d6f
 
 
e715f4c
 
9217d6f
 
 
 
 
 
 
e715f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed5c12c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
import gradio as gr
from huggingface_hub import hf_hub_download
import logging
import time

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

repo_id = "MaziyarPanahi/Meta-Llama-3.1-70B-Instruct-GGUF"
filename = "Meta-Llama-3.1-70B-Instruct.IQ1_M.gguf"

def chunk_text(text, chunk_size=5000):
    """
    Splits the input text into chunks of specified size.

    Args:
        text (str): The input text to be chunked.
        chunk_size (int): The size of each chunk in tokens.

    Returns:
        list: A list of text chunks.
    """
    words = text.split()
    chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
    return chunks

try:
        start_time = time.time()
        logger.info("Downloading Model....")

        hf_hub_download(
            repo_id = repo_id ,
            filename = filename,
            local_dir="./model"
        )

        end_time = time.time()
        logger.info(f"Download complete. Time taken : {end_time - start_time} seconds.")

except Exception as e:
    logger.error(f"Unable to download Model : {e}")
    raise

llm = None

@spaces.GPU(duration=120)
def respond(message, history, temperature, max_tokens): 
    """
    Generate a streaming response using the llama3-8b model with chunking.
    
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface. - Not used.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
        
    Returns:
        str: The generated response.
    """

    chat_template = MessagesFormatterType.LLAMA_3

    global llm
    
    start_time = time.time()
    logging.info("Loading Model...")

    if llm is None:
        model = Llama(
            model_path=f"model/{filename}",
            flash_attn=True,
            n_gpu_layers=-1,
            n_batch=1,
            n_ctx=8192,
            last_n_tokens = 0
        )
        llm = model

    end_time = time.time()
    logger.info(f"Model Loaded. Time taken : {end_time - start_time} seconds.")

    start_time = time.time()
    logger.info("Loading Provider and Agent for the Llama Model....")

    provider = LlamaCppPythonProvider(llm)

    SYS_PROMPT ="""
            Extract the following information from the given text:
            Identify the specific areas where the work needs to be done and Add the furniture that has to be changed. 
            Do not specify the work that has to be done.
            Format the extracted information in the following JSON structure:
            
            {
              "Area Type1": {
                  "Furnture1",
                  "Furnture2",
                  ...
              }
              "Area Type2": {
                   "Furnture1",
                  "Furnture2",
                  ...
              }
            }
            
            Requirements:
            1. Each area type (e.g., lobby, bar, etc.) should have its own node.
            3. List the furniture on which the work needs to be performed without specifying the work or units of items.
            4. Ignore any personal information or irrelevant details.
            5. Follow the JSON pattern strictly and ensure clarity and accuracy in the extracted information.
            
            Example:
            
            Given the paragraph: "In the lobby, replace 5 light fixtures and remove 2 old carpets. In the bar, 
            install 3 new tables and remove 4 broken chairs."
            
            The JSON output should be:
            {
              "Lobby": {
                  "Light fixtures"
                  "Old carpets"
              },
              "Bar": {
                  "New tables"
                  "Broken chairs"
                }
              }
            }
            
            Please ensure that the output JSON is well-structured and includes only relevant details about the work to be done.
    """

    agent = LlamaCppAgent(
        provider,
        system_prompt=SYS_PROMPT,
        predefined_messages_formatter_type=chat_template,
        debug_output=False
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.max_tokens = max_tokens
    settings.stream = True

    end_time = time.time()
    logger.info(f"Provider settings updated. Prompt Loaded.Time taken : {end_time - start_time} seconds.")

    chunks = chunk_text(message)

    responses = []

    start_time = time.time()
    logger.info("Generating responses...")

    for chunk in chunks:
        response = agent.get_chat_response(
            chunk,
            llm_sampling_settings=settings,
            returns_streaming_generator = True, #generate streamer
            print_output = False
        )

        responses.append(response)

    logger.info(f"Responses generated. Time taken : {time.time() - start_time} seconds.")

    output = ""

    for response in responses:
        for text in response:
            output += text

    yield output

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
</div>
'''

LICENSE = """
<p/>
---
For more information, visit our [website](https://contentease.ai).
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}
"""
# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    gr.Markdown(DESCRIPTION)

    gr.ChatInterface(
        fn=respond,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.90, label="Temperature", render=False),
            gr.Slider(minimum=128, maximum=2000, step=1, value=1500, label="Max new tokens", render=False),
        ]
    )

    gr.Markdown(LICENSE)

if __name__ == "__main__":
    try:
        demo.launch(show_error=True, debug = True)
    except Exception as e:
        logger.error(f"Error launching Gradio demo: {e}")