Spaces:
Runtime error
Runtime error
contenteaseAI
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,160 +1,195 @@
|
|
1 |
-
import spaces
|
2 |
-
import json
|
3 |
-
import subprocess
|
4 |
-
from llama_cpp import Llama
|
5 |
-
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
|
6 |
-
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
7 |
-
import gradio as gr
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
-
import logging
|
10 |
-
import time
|
11 |
-
|
12 |
-
logging.basicConfig(level=logging.INFO)
|
13 |
-
logger = logging.getLogger(__name__)
|
14 |
-
|
15 |
-
repo_id = "QuantFactory/Meta-Llama-3-8B-Instruct-GGUF"
|
16 |
-
filename = "Meta-Llama-3-8B-Instruct.Q8_0.gguf"
|
17 |
-
|
18 |
-
try:
|
19 |
-
start_time = time.time()
|
20 |
-
logger.info("Downloading Model....")
|
21 |
-
|
22 |
-
hf_hub_download(
|
23 |
-
repo_id = repo_id ,
|
24 |
-
filename = filename,
|
25 |
-
local_dir="./model"
|
26 |
-
)
|
27 |
-
|
28 |
-
end_time = time.time()
|
29 |
-
logger.info(f"Download complete. Time taken : {end_time - start_time} seconds.")
|
30 |
-
|
31 |
-
except Exception as e:
|
32 |
-
logger.error(f"Unable to download Model : {e}")
|
33 |
-
raise
|
34 |
-
|
35 |
-
llm = None
|
36 |
-
|
37 |
-
@spaces.GPU(duration=120)
|
38 |
-
def respond(message, history, temperature, max_tokens):
|
39 |
-
"""
|
40 |
-
Generate a streaming response using the llama3-8b model with chunking.
|
41 |
-
|
42 |
-
Args:
|
43 |
-
message (str): The input message.
|
44 |
-
history (list): The conversation history used by ChatInterface. - Not used.
|
45 |
-
temperature (float): The temperature for generating the response.
|
46 |
-
max_new_tokens (int): The maximum number of new tokens to generate.
|
47 |
-
|
48 |
-
Returns:
|
49 |
-
str: The generated response.
|
50 |
-
"""
|
51 |
-
|
52 |
-
chat_template = MessagesFormatterType.LLAMA_3
|
53 |
-
|
54 |
-
global llm
|
55 |
-
|
56 |
-
start_time = time.time()
|
57 |
-
logging.info("Loading Model...")
|
58 |
-
|
59 |
-
if llm is None:
|
60 |
-
model = Llama(
|
61 |
-
model_path=f"model/{filename}",
|
62 |
-
flash_attn=True,
|
63 |
-
n_gpu_layers=-1,
|
64 |
-
n_batch=1,
|
65 |
-
n_ctx=8192,
|
66 |
-
last_n_tokens = 0
|
67 |
-
)
|
68 |
-
llm = model
|
69 |
-
|
70 |
-
end_time = time.time()
|
71 |
-
logger.info(f"Model Loaded. Time taken : {end_time - start_time} seconds.")
|
72 |
-
|
73 |
-
start_time = time.time()
|
74 |
-
logger.info("Loading Provider and Agent for the Llama Model....")
|
75 |
-
|
76 |
-
provider = LlamaCppPythonProvider(llm)
|
77 |
-
|
78 |
-
SYS_PROMPT ="""
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
""
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
logger.error(f"Error launching Gradio demo: {e}")
|
|
|
1 |
+
import spaces
|
2 |
+
import json
|
3 |
+
import subprocess
|
4 |
+
from llama_cpp import Llama
|
5 |
+
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
|
6 |
+
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
7 |
+
import gradio as gr
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
import logging
|
10 |
+
import time
|
11 |
+
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
repo_id = "QuantFactory/Meta-Llama-3-8B-Instruct-GGUF"
|
16 |
+
filename = "Meta-Llama-3-8B-Instruct.Q8_0.gguf"
|
17 |
+
|
18 |
+
try:
|
19 |
+
start_time = time.time()
|
20 |
+
logger.info("Downloading Model....")
|
21 |
+
|
22 |
+
hf_hub_download(
|
23 |
+
repo_id = repo_id ,
|
24 |
+
filename = filename,
|
25 |
+
local_dir="./model"
|
26 |
+
)
|
27 |
+
|
28 |
+
end_time = time.time()
|
29 |
+
logger.info(f"Download complete. Time taken : {end_time - start_time} seconds.")
|
30 |
+
|
31 |
+
except Exception as e:
|
32 |
+
logger.error(f"Unable to download Model : {e}")
|
33 |
+
raise
|
34 |
+
|
35 |
+
llm = None
|
36 |
+
|
37 |
+
@spaces.GPU(duration=120)
|
38 |
+
def respond(message, history, temperature, max_tokens):
|
39 |
+
"""
|
40 |
+
Generate a streaming response using the llama3-8b model with chunking.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
message (str): The input message.
|
44 |
+
history (list): The conversation history used by ChatInterface. - Not used.
|
45 |
+
temperature (float): The temperature for generating the response.
|
46 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
str: The generated response.
|
50 |
+
"""
|
51 |
+
|
52 |
+
chat_template = MessagesFormatterType.LLAMA_3
|
53 |
+
|
54 |
+
global llm
|
55 |
+
|
56 |
+
start_time = time.time()
|
57 |
+
logging.info("Loading Model...")
|
58 |
+
|
59 |
+
if llm is None:
|
60 |
+
model = Llama(
|
61 |
+
model_path=f"model/{filename}",
|
62 |
+
flash_attn=True,
|
63 |
+
n_gpu_layers=-1,
|
64 |
+
n_batch=1,
|
65 |
+
n_ctx=8192,
|
66 |
+
last_n_tokens = 0
|
67 |
+
)
|
68 |
+
llm = model
|
69 |
+
|
70 |
+
end_time = time.time()
|
71 |
+
logger.info(f"Model Loaded. Time taken : {end_time - start_time} seconds.")
|
72 |
+
|
73 |
+
start_time = time.time()
|
74 |
+
logger.info("Loading Provider and Agent for the Llama Model....")
|
75 |
+
|
76 |
+
provider = LlamaCppPythonProvider(llm)
|
77 |
+
|
78 |
+
SYS_PROMPT ="""
|
79 |
+
Extract the following information from the given text:
|
80 |
+
Identify the specific areas where the work needs to be done and Add the furniture that has to be changed.
|
81 |
+
Do not specify the work that has to be done.
|
82 |
+
Format the extracted information in the following JSON structure:
|
83 |
+
|
84 |
+
{
|
85 |
+
"Area Type": {
|
86 |
+
"Furnture1": units (integer),
|
87 |
+
"Furnture2": units (integer),
|
88 |
+
...
|
89 |
+
}
|
90 |
+
}
|
91 |
+
|
92 |
+
Requirements:
|
93 |
+
1. Each area type (e.g., lobby, bar, etc.) should have its own node.
|
94 |
+
3. List the furniture on which the work needs to be performed without specifying the work.
|
95 |
+
4. specify the units as integers.
|
96 |
+
5. Ignore any personal information or irrelevant details.
|
97 |
+
6. Follow the JSON pattern strictly and ensure clarity and accuracy in the extracted information.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
Given the paragraph: "In the lobby, replace 5 light fixtures and remove 2 old carpets. In the bar,
|
102 |
+
install 3 new tables and remove 4 broken chairs."
|
103 |
+
|
104 |
+
The JSON output should be:
|
105 |
+
{
|
106 |
+
"Lobby": {
|
107 |
+
"Light fixtures": 5
|
108 |
+
"Old carpets": 2
|
109 |
+
},
|
110 |
+
"Bar": {
|
111 |
+
"New tables": 3
|
112 |
+
"Broken chairs": 4
|
113 |
+
}
|
114 |
+
}
|
115 |
+
}
|
116 |
+
|
117 |
+
Please ensure that the output JSON is well-structured and includes only relevant details about the work to be done.
|
118 |
+
"""
|
119 |
+
|
120 |
+
agent = LlamaCppAgent(
|
121 |
+
provider,
|
122 |
+
system_prompt=SYS_PROMPT,
|
123 |
+
predefined_messages_formatter_type=chat_template,
|
124 |
+
debug_output=False
|
125 |
+
)
|
126 |
+
|
127 |
+
settings = provider.get_provider_default_settings()
|
128 |
+
settings.temperature = temperature
|
129 |
+
settings.max_tokens = max_tokens
|
130 |
+
settings.stream = True
|
131 |
+
|
132 |
+
end_time = time.time()
|
133 |
+
logger.info(f"Provider settings updated. Prompt Loaded.Time taken : {end_time - start_time} seconds.")
|
134 |
+
|
135 |
+
start_time = time.time()
|
136 |
+
logger.info("Generating responses...")
|
137 |
+
response = agent.get_chat_response(
|
138 |
+
message,
|
139 |
+
llm_sampling_settings=settings,
|
140 |
+
returns_streaming_generator = False, #generate streamer
|
141 |
+
print_output = False
|
142 |
+
)
|
143 |
+
logger.info(f"Responses generated. Time taken : {time.time() - start_time} seconds.")
|
144 |
+
|
145 |
+
return response
|
146 |
+
|
147 |
+
DESCRIPTION = '''
|
148 |
+
<div>
|
149 |
+
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
|
150 |
+
</div>
|
151 |
+
'''
|
152 |
+
|
153 |
+
LICENSE = """
|
154 |
+
<p/>
|
155 |
+
---
|
156 |
+
For more information, visit our [website](https://contentease.ai).
|
157 |
+
"""
|
158 |
+
|
159 |
+
PLACEHOLDER = """
|
160 |
+
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
161 |
+
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
|
162 |
+
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
|
163 |
+
</div>
|
164 |
+
"""
|
165 |
+
|
166 |
+
css = """
|
167 |
+
h1 {
|
168 |
+
text-align: center;
|
169 |
+
display: block;
|
170 |
+
}
|
171 |
+
"""
|
172 |
+
# Gradio block
|
173 |
+
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
174 |
+
|
175 |
+
with gr.Blocks(fill_height=True, css=css) as demo:
|
176 |
+
gr.Markdown(DESCRIPTION)
|
177 |
+
|
178 |
+
gr.ChatInterface(
|
179 |
+
fn=respond,
|
180 |
+
chatbot=chatbot,
|
181 |
+
fill_height=True,
|
182 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
183 |
+
additional_inputs=[
|
184 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.90, label="Temperature", render=False),
|
185 |
+
gr.Slider(minimum=128, maximum=2000, step=1, value=1500, label="Max new tokens", render=False),
|
186 |
+
]
|
187 |
+
)
|
188 |
+
|
189 |
+
gr.Markdown(LICENSE)
|
190 |
+
|
191 |
+
if __name__ == "__main__":
|
192 |
+
try:
|
193 |
+
demo.launch(show_error=True, debug = True)
|
194 |
+
except Exception as e:
|
195 |
logger.error(f"Error launching Gradio demo: {e}")
|