Spaces:
Runtime error
Runtime error
from transformers import ViTImageProcessor, ViTForImageClassification | |
from PIL import Image | |
from io import BytesIO | |
import requests | |
class Generador(): | |
def __init__(self, configuraciones): | |
self.modelo = configuraciones.get('model') | |
self.tokenizer = configuraciones.get('tokenizer') | |
def generar_prediccion(self, imagen_bytes): | |
# @title **Ejemplo práctico** | |
prediccion = None | |
try: | |
# Inicializamos los procesadores y el modelo | |
procesador = ViTImageProcessor.from_pretrained(self.tokenizer) | |
modelo = ViTForImageClassification.from_pretrained(self.modelo) | |
# Procesamos nuestra imagen | |
inputs = procesador(images=imagen_bytes, return_tensors="pt") | |
outputs = modelo(**inputs) | |
logits = outputs.logits | |
# Obtenemos las predicciones | |
predicted_class_idx = logits.argmax(-1).item() | |
prediccion = modelo.config.id2label[predicted_class_idx] | |
except Exception as error: | |
print(f"No es Chems\n{error}") | |
prediccion = error | |
finally: | |
self.prediccion = str(prediccion) | |