pce / scripts /clusterprosody.py
catiR
run clustering
a894787
raw
history blame
20 kB
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import soundfile as sf
from collections import defaultdict
from dtw import dtw
from sklearn_extra.cluster import KMedoids
from copy import deepcopy
import os, librosa, json
# based on original implementation by
# https://colab.research.google.com/drive/1RApnJEocx3-mqdQC2h5SH8vucDkSlQYt?authuser=1#scrollTo=410ecd91fa29bc73
# by magnús freyr morthens 2023 supported by rannís nsn
def z_score(x, mean, std):
return (x - mean) / std
# output
# {'013823-0457777': [('hvaða', 0.89, 1.35),
# ('sjúkdómar', 1.35, 2.17),
# ('geta', 2.17, 2.4),
# ('fylgt', 2.4, 2.83),
# ('óbeinum', 2.83, 3.29),
# ('reykingum', 3.29, 3.9)],
# '014226-0508808': [('hvaða', 1.03, 1.45),
# ('sjúkdómar', 1.45, 2.28),
# ('geta', 2.41, 2.7),
# ('fylgt', 2.7, 3.09),
# ('óbeinum', 3.09, 3.74),
# ('reykingum', 3.74, 4.42)],
# '013726-0843679': [('hvaða', 0.87, 1.14),
# ('sjúkdómar', 1.14, 1.75),
# ('geta', 1.75, 1.96),
# ('fylgt', 1.96, 2.27),
# ('óbeinum', 2.27, 2.73),
# ('reykingum', 2.73, 3.27)] }
# takes a list of human SPEAKER IDS not the whole meta db
def get_word_aligns(rec_ids, norm_sent, aln_dir):
"""
Returns a dictionary of word alignments for a given sentence.
"""
word_aligns = defaultdict(list)
for rec in rec_ids:
slist = norm_sent.split(" ")
aln_path = os.path.join(aln_dir, f'{rec}.tsv')
with open(aln_path) as f:
lines = f.read().splitlines()
lines = [l.split('\t') for l in lines]
try:
assert len(lines) == len(slist)
word_aligns[rec] = [(w,float(s),float(e)) for w,s,e in lines]
except:
print(slist, lines, "<---- something didn't match")
return word_aligns
def get_pitches(start_time, end_time, id, path):
"""
Returns an array of pitch values for a given speech.
Reads from .f0 file of Time, F0, IsVoiced
"""
f = os.path.join(path, id + ".f0")
with open(f) as f:
lines = f.read().splitlines()
lines = [[float(x) for x in line.split()] for line in lines] # split lines into floats
pitches = []
# find the mean of all pitches in the whole sentence
mean = np.mean([line[1] for line in lines if line[2] != -1])
# find the std of all pitches in the whole sentence
std = np.std([line[1] for line in lines if line[2] != -1])
for line in lines:
time, pitch, is_pitch = line
if start_time <= time <= end_time:
if is_pitch:
pitches.append(z_score(pitch, mean, std))
else:
#pitches.append(z_score(fifth_percentile, mean, std))
pitches.append(-0.99)
return pitches
# jcheng used energy from esps get_f0
# get f0 says (?) :
#The RMS value of each record is computed based on a 30 msec hanning
#window with its left edge placed 5 msec before the beginning of the
#frame.
# jcheng z-scored the energys, per file.
# TODO: implement that. ?
# not sure librosa provides hamming window in rms function directly
# TODO handle audio that not originally .wav
def get_rmse(start_time, end_time, id, path):
"""
Returns an array of RMSE values for a given speech.
"""
f = os.path.join(path, id + ".wav")
audio, sr = librosa.load(f, sr=16000)
segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
rmse = librosa.feature.rms(y=segment)
rmse = rmse[0]
#idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
return rmse#[idx]
def downsample_rmse2pitch(rmse,pitch_len):
idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
return rmse[idx]
# parse user input string to usable word indices for the sentence
# TODO handle cases
def parse_word_indices(start_end_word_index):
ixs = start_end_word_index.split('-')
if len(ixs) == 1:
s = int(ixs[0])
e = int(ixs[0])
else:
s = int(ixs[0])
e = int(ixs[-1])
return s-1,e-1
# take any (1stword, lastword) or (word)
# unit and prepare data for that unit
def get_data(norm_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, start_end_word_index):
"""
Returns a dictionary of pitch, rmse, and spectral centroids values for a given sentence/word combinations.
"""
s_ix, e_ix = parse_word_indices(start_end_word_index)
words = '_'.join(norm_sent.split(' ')[s_ix:e_ix+1])
word_aligns = get_word_aligns(h_spk_ids,norm_sent,h_align_dir)
data = defaultdict(list)
align_data = defaultdict(list)
for id, word_al in word_aligns.items():
start_time = word_al[s_ix][1]
end_time = word_al[e_ix][2]
seg_aligns = word_al[s_ix:e_ix+1]
seg_aligns = [(w,round(s-start_time,2),round(e-start_time,2)) for w,s,e in seg_aligns]
pitches = get_pitches(start_time, end_time, id, h_f0_dir)
rmses = get_rmse(start_time, end_time, id, h_wav_dir)
rmses = downsample_rmse2pitch(rmses,len(pitches))
#spectral_centroids = get_spectral_centroids(start_time, end_time, id, wav_dir, len(pitches))
pitches_cpy = np.array(deepcopy(pitches))
rmses_cpy = np.array(deepcopy(rmses))
d = [[p, r] for p, r in zip(pitches_cpy, rmses_cpy)]
#words = "-".join(word_combs)
data[f"{words}**{id}"] = d
align_data[f"{words}**{id}"] = seg_aligns
return words, data, align_data
def dtw_distance(x, y):
"""
Returns the DTW distance between two pitch sequences.
"""
alignment = dtw(x, y, keep_internals=True)
return alignment.normalizedDistance
# recs is a sorted list of rec IDs
# all recs/data contain the same words
# rec1 and rec2 can be the same
def pair_dists(data,words,recs):
dtw_dists = []
for rec1 in recs:
key1 = f'{words}**{rec1}'
val1 = data[key1]
for rec2 in recs:
key2 = f'{words}**{rec2}'
val2 = data[key2]
dtw_dists.append((f"{rec1}**{rec2}", dtw_distance(val1, val2)))
#for key1, value1 in data.items():
# d1 = key1.split("**")
# words1 = d1[0]
# if not words:
# words = words1
# spk1 = d1[1]
# for key2, value2 in data.items():
# d2 = key2.split("**")
# words2 = d2[0]
# spk2 = d2[1]
# if all([w0 == w2 for w0, w2 in zip(words.split('_'), words2.split('_'))]):
#dtw_dists[words1].append((f"{spk1}**{spk2}", dtw_distance(value1, value2)))
# dtw_dists.append((f"{spk1}**{spk2}", dtw_distance(value1, value2)))
return dtw_dists
# dtw dists is the dict from units to list of tuples
# or: now just the list not labelled with the unit.
# {'hvaða-sjúkdómar':
# [('013823-0457777_013823-0457777', 0.0),
# ('013823-0457777_013698-0441666', 0.5999433281203399),
# ('013823-0457777_014675-0563760', 0.4695447105594414),
# ('014226-0508808_013823-0457777', 0.44080874425223393),
# ('014226-0508808_014226-0508808', 0.0),
# ('014226-0508808_013726-0843679', 0.5599404672667414),
# ('014226-0508808_013681-0442313', 0.6871330752342419)]
# }
# the 0-distance self-comparisons are present here
# along with both copies of symmetric Speaker1**Speaker2, Speaker2**Speaker1
# TODO
# make n_clusters a param with default 3
def kmedoids_clustering(X):
kmedoids = KMedoids(n_clusters=3, random_state=0).fit(X)
y_km = kmedoids.labels_
return y_km, kmedoids
def get_tts_data(tdir,voice,start_end_word_index):
with open(f'{tdir}{voice}.json') as f:
speechmarks = json.load(f)
speechmarks = speechmarks['alignments']
sr=16000
tts_audio, _ = librosa.load(f'{tdir}{voice}.wav',sr=sr)
# TODO
# tts operates on punctuated version
# so clean this up instead of assuming it will work
s_ix, e_ix = parse_word_indices(start_end_word_index)
# TODO
# default speechmarks return word start time only -
# this cannot describe pauses #######
s_tts = speechmarks[s_ix]["time"]/1000
if e_ix+1 < len(speechmarks): #if user doesn't want final word, which has no end time mark,
e_tts = speechmarks[e_ix+1]["time"]/1000
tts_segment = tts_audio[int(np.floor(s_tts * sr)):int(np.ceil(e_tts * sr))]
else:
tts_segment = tts_audio[int(np.floor(s_tts * sr)):]
e_tts = len(tts_audio) / sr
# TODO not ideal as probably silence padding on end file?
tts_align = [(speechmarks[ix]["value"],speechmarks[ix]["time"]) for ix in range(s_ix,e_ix+1)]
tts_align = [(w,s/1000) for w,s in tts_align]
tts_align = [(w,round(s-s_tts,3)) for w,s in tts_align]
tts_f0 = get_pitches(s_tts, e_tts, voice, tdir)
tts_rmse = get_rmse(s_tts, e_tts, voice, tdir)
tts_rmse = downsample_rmse2pitch(tts_rmse,len(tts_f0))
t_pitches_cpy = np.array(deepcopy(tts_f0))
t_rmses_cpy = np.array(deepcopy(tts_rmse))
tts_data = [[p, r] for p, r in zip(t_pitches_cpy, t_rmses_cpy)]
return tts_data, tts_align
def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voice):
tts_info = []
for label in set([c for r,c in clusters]):
recs = [r for r,c in clusters if c==label]
dists = []
for rec in recs:
key = f'{words}**{rec}'
dists.append(dtw_distance(tts_data, speech_data[key]))
tts_info.append((label,np.nanmean(dists)))
tts_info = sorted(tts_info,key = lambda x: x[1])
best_cluster = tts_info[0][0]
best_cluster_score = tts_info[0][1]
matched_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==best_cluster}
# now do graphs of matched_data with tts_data
# and report best_cluster_score
tts_fig = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
mid_cluster = tts_info[1][0]
mid_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==mid_cluster}
bad_cluster = tts_info[2][0]
bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
fig_mid = plot_pitch_cluster(mid_data,words,seg_aligns,mid_cluster)
fig_bad = plot_pitch_cluster(bad_data,words,seg_aligns,bad_cluster)
return best_cluster_score, tts_fig, fig_mid, fig_bad
# since clustering strictly operates on X,
# once reduce a duration metric down to pair-distances,
# it no longer matters that duration and pitch/energy had different dimensionality
# TODO option to dtw on 3 feats pitch/ener/dur separately
# check if possible cluster with 3dim distance mat?
# or can it not take that input in multidimensional space
# then the 3 dists can still be averaged to flatten, if appropriately scaled
def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, tts_dir, voices, start_end_word_index):
h_spk_ids = sorted(h_spk_ids)
nsents = len(h_spk_ids)
words, data, seg_aligns = get_data(norm_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, start_end_word_index)
dtw_dists = pair_dists(data,words,h_spk_ids)
kmedoids_cluster_dists = []
X = [d[1] for d in dtw_dists]
X = [X[i:i+nsents] for i in range(0, len(X), nsents)]
X = np.array(X)
y_km, kmedoids = kmedoids_clustering(X)
#plot_clusters(X, y_km, words)
#c1, c2, c3 = [X[np.where(kmedoids.labels_ == i)] for i in range(3)]
result = zip(X, kmedoids.labels_)
groups = [[r,c] for r,c in zip(h_spk_ids,kmedoids.labels_)]
# tts: assume the first 64 chars of sentence are enough
tdir = f'{tts_dir}{orig_sent.replace(" ","_")[:65]}/'
for v in voices:
tts_data, tts_align = get_tts_data(tdir,v,start_end_word_index)
# match the data with a cluster -----
best_cluster_score, tts_fig, fig_mid, fig_bad = match_tts(groups, data, tts_data, tts_align, words, seg_aligns,v)
# only supports one voice at a time currently
return best_cluster_score, tts_fig, fig_mid, fig_bad
#return words, kmedoids_cluster_dists, groups
# TODO there IS sth for making tts_data
# but im probably p much on my own rlly for that.
# TODO this one is v v helpful.
# but mind if i adjusted a dictionaries earlier.
def spks_all_cdist():
speaker_to_tts_dtw_dists = defaultdict(list)
for key1, value1 in data.items():
d = key1.split("-")
words1 = d[:-2]
id1, id2 = d[-2], d[-1]
for key2, value2 in tts_data.items():
d = key2.split("-")
words2 = d[:-2]
id3, id4 = d[-2], d[-1]
if all([w1 == w2 for w1, w2 in zip(words1, words2)]):
speaker_to_tts_dtw_dists[f"{'-'.join(words1)}"].append((f"{id1}-{id2}_{id3}-{id4}", dtw_distance(value1, value2)))
return speaker_to_tts_dtw_dists
#TODO i think this is also gr8
# but like figure out how its doing
# bc dict format and stuff,
# working keying by word index instead of word text, ***********
# and for 1 wd or 3+ wd units...
def tts_cdist():
tts_dist_to_cluster = defaultdict(list)
for words1, datas1 in kmedoids_cluster_dists.items():
for d1 in datas1:
cluster, sp_id1, arr = d1
for words2, datas2 in speaker_to_tts_dtw_dists.items():
for d2 in datas2:
ids, dist = d2
sp_id2, tts_alfur = ids.split("_")
if sp_id1 == sp_id2 and words1 == words2:
tts_dist_to_cluster[f"{words1}-{cluster}"].append(dist)
tts_mean_dist_to_cluster = {
key: np.mean(value) for key, value in tts_dist_to_cluster.items()
}
return tts_mean_dist_to_cluster
# TODO check if anything uses this?
def get_audio_part(start_time, end_time, id, path):
"""
Returns a dictionary of RMSE values for a given sentence.
"""
f = os.path.join(path, id + ".wav")
audio, sr = librosa.load(f, sr=16000)
segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
return segment
def plot_pitch_tts(speech_data,tts_data, tts_align,words,seg_aligns,cluster_id, voice):
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
cc = 0
fig = plt.figure(figsize=(10, 5))
plt.title(f"{words} - Pitch - Cluster {cluster_id}")
for k,v in speech_data.items():
spk = k.split('**')[1]
word_times = seg_aligns[k]
pitches = [p for p,e in v]
# datapoint interval is 0.005 seconds
pitch_xvals = [x*0.005 for x in range(len(pitches))]
# centre around the first word boundary -
# if 3+ words, too bad.
if len(word_times)>1:
realign = np.mean([word_times[0][2],word_times[1][1]])
pitch_xvals = [x - realign for x in pitch_xvals]
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
if len(word_times)>2:
for i in range(1,len(word_times)-1):
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
plt.scatter(pitch_xvals, pitches, color=colors[cc], label=f"Speaker {spk}")
cc += 1
if cc >= len(colors):
cc=0
tpitches = [p for p,e in tts_data]
t_xvals = [x*0.005 for x in range(len(tpitches))]
if len(tts_align)>1:
realign = tts_align[1][1]
t_xvals = [x - realign for x in t_xvals]
tts_align = [(w,s-realign) for w,s in tts_align]
if len(tts_align)>2:
for i in range(2,len(tts_align)):
bound_line = tts_align[i][1]
plt.axvline(x=bound_line, color="black", linestyle='--', linewidth=1, label=f"TTS -> {tts_align[i][0]}")
plt.scatter(t_xvals, tpitches, color="black", label=f"TTS {voice}")
#plt.legend()
#plt.show()
return fig
def plot_pitch_cluster(speech_data,words,seg_aligns,cluster_id):
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
cc = 0
fig = plt.figure(figsize=(8, 4))
plt.title(f"{words} - Pitch - Cluster {cluster_id}")
for k,v in speech_data.items():
spk = k.split('**')[1]
word_times = seg_aligns[k]
pitches = [p for p,e in v]
# datapoint interval is 0.005 seconds
pitch_xvals = [x*0.005 for x in range(len(pitches))]
# centre around the first word boundary -
# if 3+ words, too bad.
if len(word_times)>1:
realign = np.mean([word_times[0][2],word_times[1][1]])
pitch_xvals = [x - realign for x in pitch_xvals]
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
if len(word_times)>2:
for i in range(1,len(word_times)-1):
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
plt.scatter(pitch_xvals, pitches, color=colors[cc], label=f"Speaker {spk}")
cc += 1
if cc >= len(colors):
cc=0
#plt.legend()
#plt.show()
return fig
# want to:
# - find tts best cluster
# - find avg dist for tts in that cluster
# - find avg dist for any human to the rest of its cluster
# see near end of notebook for v nice way to grab timespans of tts audio
# (or just the start/end timestamps to mark them) from alignment json
# based on word position index -
# so probably really do show user the sentence with each word numbered.
# THEN there is -
# \# Plot pitch, rmse, and spectral centroid for each word combination for each speaker
# - this is one persontoken per graph and has a word division line - idk if works >2 wds.
# it might be good to do this for tts at least, eh
# Plot pitch values for each word combination for each speaker in each cluster (with word boundaries)
# - multi speakers (one cluster) per graph - this will be good to show, with tts on top.
# i may want to recentre it around wd bound. at least if only 2 wds.
# well i could just pick, like, it will be centred around the 1st wboundary & good luck if more.
# - the same as above, but rmse
# go all the way to the bottom to see gphs with a tts added on to one cluster.
# will need:
# the whole sentence text (index, word) pairs
# the indices of units the user wants
# human meta db of all human recordings
# tts dir, human wav + align + f0 dirs
# list of tts voices
# an actual wav file for each human rec, probably
# params like: use f0, use rmse, (use dur), [.....]
# .. check.
def plot_clusters(X, y, word):
u_labels = np.unique(y)
# plot the results
for i in u_labels:
plt.scatter(X[y == i, 0], X[y == i, 1], label=i)
plt.title(word)
plt.legend()
plt.show()