catiR
commited on
Commit
·
a894787
1
Parent(s):
8827531
run clustering
Browse files- app.py +8 -3
- scripts/clusterprosody.py +51 -5
- scripts/runSQ.py +12 -1
app.py
CHANGED
@@ -35,7 +35,7 @@ def f1(voices, sent, indices):
|
|
35 |
#tts_audio, tts_score, graph = scripts.runSQ.run(sent, voices, indices)
|
36 |
tts_audio, tts_score, graph = scripts.runSQ.run(sent, [voices], indices)
|
37 |
score_report = f'Difference from TTS to real speech: {round(tts_score,2)}'
|
38 |
-
return (tts_audio, score_report,
|
39 |
|
40 |
|
41 |
def label_indices(sentence):
|
@@ -46,11 +46,13 @@ def label_indices(sentence):
|
|
46 |
|
47 |
|
48 |
|
|
|
|
|
49 |
bl = gr.Blocks()
|
50 |
with bl:
|
51 |
|
52 |
|
53 |
-
temp_sentences = ['Litlaus græn hugmynd?','Var það ekki nóg?', 'Ef svo er hvað heita þau þá?','Eru maríuhænur á Íslandi?']
|
54 |
|
55 |
voices = ['Alfur','Dilja']
|
56 |
# currently i only get json speech marks for those two.
|
@@ -75,9 +77,12 @@ with bl:
|
|
75 |
tts_output = gr.Audio(interactive=False)
|
76 |
report_score = gr.Markdown('Difference from TTS to real speech:')
|
77 |
pl1 = gr.Plot()
|
|
|
|
|
|
|
78 |
|
79 |
temp_sentmenu.input(label_indices,temp_sentmenu,marked_sentence)
|
80 |
-
temp_button.click(f1,[voiceselect,temp_sentmenu,spanselect],[tts_output,report_score,pl1])
|
81 |
|
82 |
|
83 |
if __name__ == "__main__":
|
|
|
35 |
#tts_audio, tts_score, graph = scripts.runSQ.run(sent, voices, indices)
|
36 |
tts_audio, tts_score, graph = scripts.runSQ.run(sent, [voices], indices)
|
37 |
score_report = f'Difference from TTS to real speech: {round(tts_score,2)}'
|
38 |
+
return (tts_audio, score_report, tts_graph, mid_graph, bad_graph)
|
39 |
|
40 |
|
41 |
def label_indices(sentence):
|
|
|
46 |
|
47 |
|
48 |
|
49 |
+
temp_sentences = scripts.runSQ.snorm.create_temp_sent_list()
|
50 |
+
|
51 |
bl = gr.Blocks()
|
52 |
with bl:
|
53 |
|
54 |
|
55 |
+
#temp_sentences = ['Litlaus græn hugmynd?','Var það ekki nóg?', 'Ef svo er hvað heita þau þá?','Eru maríuhænur á Íslandi?']
|
56 |
|
57 |
voices = ['Alfur','Dilja']
|
58 |
# currently i only get json speech marks for those two.
|
|
|
77 |
tts_output = gr.Audio(interactive=False)
|
78 |
report_score = gr.Markdown('Difference from TTS to real speech:')
|
79 |
pl1 = gr.Plot()
|
80 |
+
with gr.Row():
|
81 |
+
pl2 = gr.Plot()
|
82 |
+
pl3 = gr.Plot()
|
83 |
|
84 |
temp_sentmenu.input(label_indices,temp_sentmenu,marked_sentence)
|
85 |
+
temp_button.click(f1,[voiceselect,temp_sentmenu,spanselect],[tts_output,report_score,pl1,pl2,pl3])
|
86 |
|
87 |
|
88 |
if __name__ == "__main__":
|
scripts/clusterprosody.py
CHANGED
@@ -302,9 +302,16 @@ def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voi
|
|
302 |
|
303 |
# now do graphs of matched_data with tts_data
|
304 |
# and report best_cluster_score
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
|
310 |
|
@@ -346,10 +353,10 @@ def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, tts
|
|
346 |
tts_data, tts_align = get_tts_data(tdir,v,start_end_word_index)
|
347 |
|
348 |
# match the data with a cluster -----
|
349 |
-
best_cluster_score,
|
350 |
|
351 |
# only supports one voice at a time currently
|
352 |
-
return best_cluster_score,
|
353 |
#return words, kmedoids_cluster_dists, groups
|
354 |
|
355 |
|
@@ -477,6 +484,45 @@ def plot_pitch_tts(speech_data,tts_data, tts_align,words,seg_aligns,cluster_id,
|
|
477 |
|
478 |
|
479 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
|
481 |
|
482 |
|
|
|
302 |
|
303 |
# now do graphs of matched_data with tts_data
|
304 |
# and report best_cluster_score
|
305 |
+
tts_fig = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
|
306 |
+
|
307 |
+
mid_cluster = tts_info[1][0]
|
308 |
+
mid_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==mid_cluster}
|
309 |
+
bad_cluster = tts_info[2][0]
|
310 |
+
bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
|
311 |
+
fig_mid = plot_pitch_cluster(mid_data,words,seg_aligns,mid_cluster)
|
312 |
+
fig_bad = plot_pitch_cluster(bad_data,words,seg_aligns,bad_cluster)
|
313 |
+
|
314 |
+
return best_cluster_score, tts_fig, fig_mid, fig_bad
|
315 |
|
316 |
|
317 |
|
|
|
353 |
tts_data, tts_align = get_tts_data(tdir,v,start_end_word_index)
|
354 |
|
355 |
# match the data with a cluster -----
|
356 |
+
best_cluster_score, tts_fig, fig_mid, fig_bad = match_tts(groups, data, tts_data, tts_align, words, seg_aligns,v)
|
357 |
|
358 |
# only supports one voice at a time currently
|
359 |
+
return best_cluster_score, tts_fig, fig_mid, fig_bad
|
360 |
#return words, kmedoids_cluster_dists, groups
|
361 |
|
362 |
|
|
|
484 |
|
485 |
|
486 |
|
487 |
+
def plot_pitch_cluster(speech_data,words,seg_aligns,cluster_id):
|
488 |
+
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
|
489 |
+
cc = 0
|
490 |
+
fig = plt.figure(figsize=(8, 4))
|
491 |
+
plt.title(f"{words} - Pitch - Cluster {cluster_id}")
|
492 |
+
for k,v in speech_data.items():
|
493 |
+
|
494 |
+
spk = k.split('**')[1]
|
495 |
+
|
496 |
+
word_times = seg_aligns[k]
|
497 |
+
|
498 |
+
pitches = [p for p,e in v]
|
499 |
+
# datapoint interval is 0.005 seconds
|
500 |
+
pitch_xvals = [x*0.005 for x in range(len(pitches))]
|
501 |
+
|
502 |
+
# centre around the first word boundary -
|
503 |
+
# if 3+ words, too bad.
|
504 |
+
if len(word_times)>1:
|
505 |
+
realign = np.mean([word_times[0][2],word_times[1][1]])
|
506 |
+
pitch_xvals = [x - realign for x in pitch_xvals]
|
507 |
+
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
|
508 |
+
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
|
509 |
+
|
510 |
+
if len(word_times)>2:
|
511 |
+
for i in range(1,len(word_times)-1):
|
512 |
+
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
|
513 |
+
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
|
514 |
+
|
515 |
+
plt.scatter(pitch_xvals, pitches, color=colors[cc], label=f"Speaker {spk}")
|
516 |
+
cc += 1
|
517 |
+
if cc >= len(colors):
|
518 |
+
cc=0
|
519 |
+
|
520 |
+
#plt.legend()
|
521 |
+
#plt.show()
|
522 |
+
|
523 |
+
|
524 |
+
return fig
|
525 |
+
|
526 |
|
527 |
|
528 |
|
scripts/runSQ.py
CHANGED
@@ -56,6 +56,17 @@ def snorm(s):
|
|
56 |
return s
|
57 |
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# find all the recordings of a given sentence
|
60 |
# listed in the corpus metadata.
|
61 |
# sentence should be provided lowercase without punctuation
|
@@ -242,7 +253,7 @@ def localtest():
|
|
242 |
f0_tts(sentence, voices, tts_dir, reaper_path = reaper_exc)
|
243 |
|
244 |
|
245 |
-
score,
|
246 |
|
247 |
|
248 |
|
|
|
56 |
return s
|
57 |
|
58 |
|
59 |
+
def create_temp_sent_list():
|
60 |
+
corpusdb = '/home/user/app/human_data/SQL1adult10s_metadata.tsv'
|
61 |
+
with open(corpusdb,'r') as handle:
|
62 |
+
meta = handle.read().splitlines()
|
63 |
+
meta = [l.split('\t')[3] for l in meta[1:]]
|
64 |
+
meta = sorted(list(set(meta)))
|
65 |
+
return meta
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
# find all the recordings of a given sentence
|
71 |
# listed in the corpus metadata.
|
72 |
# sentence should be provided lowercase without punctuation
|
|
|
253 |
f0_tts(sentence, voices, tts_dir, reaper_path = reaper_exc)
|
254 |
|
255 |
|
256 |
+
score, tts_fig, mid_fig, bad_fig = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_dir, voices, start_end_word_ix)
|
257 |
|
258 |
|
259 |
|