pce / scripts /clusterprosody.py
catiR
force align tts, add voices
366ecce
raw
history blame
15 kB
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import soundfile as sf
from collections import defaultdict
from dtw import dtw
from sklearn_extra.cluster import KMedoids
from copy import deepcopy
import os, librosa, json
# based on original implementation by
# https://colab.research.google.com/drive/1RApnJEocx3-mqdQC2h5SH8vucDkSlQYt?authuser=1#scrollTo=410ecd91fa29bc73
# by magnús freyr morthens 2023 supported by rannís nsn
def z_score(x, mean, std):
return (x - mean) / std
# given a sentence and list of its speakers + their alignment files,
# return a dictionary of word alignments
def get_word_aligns(norm_sent, aln_paths):
"""
Returns a dictionary of word alignments for a given sentence.
"""
word_aligns = defaultdict(list)
slist = norm_sent.split(" ")
for spk,aln_path in aln_paths:
with open(aln_path) as f:
lines = f.read().splitlines()
lines = [l.split('\t') for l in lines]
try:
assert len(lines) == len(slist)
word_aligns[spk] = [(w,float(s),float(e)) for w,s,e in lines]
except:
print(slist, lines, "<---- something didn't match")
return word_aligns
#TODO pass whole path
def get_pitches(start_time, end_time, fpath):
"""
Returns an array of pitch values for a given speech.
Reads from .f0 file of Time, F0, IsVoiced
"""
with open(fpath) as f:
lines = f.read().splitlines()
lines = [[float(x) for x in line.split()] for line in lines] # split lines into floats
pitches = []
# find the mean of all pitches in the whole sentence
mean = np.mean([line[1] for line in lines if line[2] != -1])
# find the std of all pitches in the whole sentence
std = np.std([line[1] for line in lines if line[2] != -1])
for line in lines:
time, pitch, is_pitch = line
if start_time <= time <= end_time:
if is_pitch:
pitches.append(z_score(pitch, mean, std))
else:
#pitches.append(z_score(fifth_percentile, mean, std))
pitches.append(-0.99)
return pitches
# TODO take whole path
# jcheng used energy from esps get_f0
# get f0 says (?) :
#The RMS value of each record is computed based on a 30 msec hanning
#window with its left edge placed 5 msec before the beginning of the
#frame.
# jcheng z-scored the energys, per file.
# TODO: implement that. ?
# not sure librosa provides hamming window in rms function directly
# TODO handle audio that not originally .wav
def get_rmse(start_time, end_time, wpath):
"""
Returns an array of RMSE values for a given speech.
"""
audio, sr = librosa.load(wpath, sr=16000)
segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
rmse = librosa.feature.rms(y=segment,frame_length=480,hop_length=80)#librosa.feature.rms(y=segment)
rmse = rmse[0]
#idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
return rmse#[idx]
# may be unnecessary depending how rmse and pitch window/hop are calculated already
def downsample_rmse2pitch(rmse,pitch_len):
idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
return rmse[idx]
# parse user input string to usable word indices for the sentence
# TODO handle cases
def parse_word_indices(start_end_word_index):
ixs = start_end_word_index.split('-')
if len(ixs) == 1:
s = int(ixs[0])
e = int(ixs[0])
else:
s = int(ixs[0])
e = int(ixs[-1])
return s-1,e-1
# take any (1stword, lastword) or (word)
# unit and prepare data for that unit
def get_data(norm_sent,path_key,start_end_word_index):
"""
Returns a dictionary of pitch, rmse, and spectral centroids values for a given sentence/word combinations.
"""
s_ix, e_ix = parse_word_indices(start_end_word_index)
words = '_'.join(norm_sent.split(' ')[s_ix:e_ix+1])
align_paths = [(spk,pdict['aln']) for spk,pdict in path_key]
word_aligns = get_word_aligns(norm_sent, align_paths)
data = defaultdict(list)
align_data = defaultdict(list)
for spk, pdict in path_key:
word_al = word_aligns[spk]
start_time = word_al[s_ix][1]
end_time = word_al[e_ix][2]
seg_aligns = word_al[s_ix:e_ix+1]
seg_aligns = [(w,round(s-start_time,2),round(e-start_time,2)) for w,s,e in seg_aligns]
pitches = get_pitches(start_time, end_time, pdict['f0'])
rmses = get_rmse(start_time, end_time, pdict['wav'])
rmses = downsample_rmse2pitch(rmses,len(pitches))
#spectral_centroids = get_spectral_centroids(start_time, end_time, id, wav_dir, len(pitches))
pitches_cpy = np.array(deepcopy(pitches))
rmses_cpy = np.array(deepcopy(rmses))
d = [[p, r] for p, r in zip(pitches_cpy, rmses_cpy)]
#words = "-".join(word_combs)
data[f"{words}**{spk}"] = d
align_data[f"{words}**{spk}"] = seg_aligns
return words, data, align_data
def dtw_distance(x, y):
"""
Returns the DTW distance between two pitch sequences.
"""
alignment = dtw(x, y, keep_internals=True)
return alignment.normalizedDistance
# recs is a sorted list of rec IDs
# all recs/data contain the same words
# rec1 and rec2 can be the same
def pair_dists(data,words,recs):
dtw_dists = []
for rec1 in recs:
key1 = f'{words}**{rec1}'
val1 = data[key1]
for rec2 in recs:
key2 = f'{words}**{rec2}'
val2 = data[key2]
dtw_dists.append((f"{rec1}**{rec2}", dtw_distance(val1, val2)))
return dtw_dists
# TODO
# make n_clusters a param with default 3
def kmedoids_clustering(X):
kmedoids = KMedoids(n_clusters=3, random_state=0).fit(X)
y_km = kmedoids.labels_
return y_km, kmedoids
def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voice):
tts_info = []
for label in set([c for r,c in clusters]):
recs = [r for r,c in clusters if c==label]
dists = []
for rec in recs:
key = f'{words}**{rec}'
dists.append(dtw_distance(tts_data, speech_data[key]))
tts_info.append((label,np.nanmean(dists)))
tts_info = sorted(tts_info,key = lambda x: x[1])
best_cluster = tts_info[0][0]
best_cluster_score = tts_info[0][1]
matched_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==best_cluster}
# now do graphs of matched_data with tts_data
# and report best_cluster_score
mid_cluster = tts_info[1][0]
mid_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==mid_cluster}
bad_cluster = tts_info[2][0]
bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
#tts_fig_p = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
tts_fig_p = plot_one_cluster(words,'pitch',matched_data,seg_aligns,cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
fig_mid_p = plot_one_cluster(words,'pitch',mid_data,seg_aligns,cluster)
fig_bad_p = plot_one_cluster(words,'pitch',bad_data,seg_aligns,cluster)
tts_fig_e = plot_one_cluster(words,'rmse',matched_data,seg_aligns,cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
fig_mid_e = plot_one_cluster(words,'rmse',mid_data,seg_aligns,cluster)
fig_bad_e = plot_one_cluster(words,'rmse',bad_data,seg_aligns,cluster)
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
def gp(d,s,x):
return os.path.join(d, f'{s}.{x}')
def gen_tts_paths(tdir,voices):
plist = [(v, {'wav': gp(tdir,v,'wav'), 'aln': gp(tdir,v,'tsv'), 'f0': gp(tdir,v,'f0')}) for v in voices]
return plist
def gen_h_paths(wdir,adir,f0dir,spks):
plist = [(s, {'wav': gp(wdir,s,'wav'), 'aln': gp(adir,s,'tsv'), 'f0': gp(f0dir,s,'f0')}) for s in spks]
return plist
# since clustering strictly operates on X,
# once reduce a duration metric down to pair-distances,
# it no longer matters that duration and pitch/energy had different dimensionality
# TODO option to dtw on 3 feats pitch/ener/dur separately
# check if possible cluster with 3dim distance mat?
# or can it not take that input in multidimensional space
# then the 3 dists can still be averaged to flatten, if appropriately scaled
def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, tts_sent_dir, voices, start_end_word_index):
h_spk_ids = sorted(h_spk_ids)
nsents = len(h_spk_ids)
h_all_paths = gen_h_paths(h_wav_dir,h_align_dir,h_f0_dir,h_spk_ids)
words, h_data, h_seg_aligns = get_data(norm_sent,h_all_paths,start_end_word_index)
dtw_dists = pair_dists(h_data,words,h_spk_ids)
kmedoids_cluster_dists = []
X = [d[1] for d in dtw_dists]
X = [X[i:i+nsents] for i in range(0, len(X), nsents)]
X = np.array(X)
y_km, kmedoids = kmedoids_clustering(X)
#plot_clusters(X, y_km, words)
#c1, c2, c3 = [X[np.where(kmedoids.labels_ == i)] for i in range(3)]
result = zip(X, kmedoids.labels_)
groups = [[r,c] for r,c in zip(h_spk_ids,kmedoids.labels_)]
tts_all_paths = gen_tts_paths(tts_sent_dir, voices)
_, tts_data, tts_seg_aligns = get_data(norm_sent,tts_all_paths,start_end_word_index)
for v in voices:
voice_data = tts_data[f"{words}**{v}"]
voice_align = tts_seg_aligns[f"{words}**{v}"]
#tts_data, tts_align = get_one_tts_data(tts_sent_dir,v,norm_sent,start_end_word_index)
# match the data with a cluster -----
best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e = match_tts(groups, h_data, voice_data, voice_align, words, h_seg_aligns,v)
# only supports one voice at a time currently
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
#return words, kmedoids_cluster_dists, group
# TODO there IS sth for making tts_data
# but im probably p much on my own rlly for that.
# TODO this one is v v helpful.
# but mind if i adjusted a dictionaries earlier.
def spks_all_cdist():
speaker_to_tts_dtw_dists = defaultdict(list)
for key1, value1 in data.items():
d = key1.split("-")
words1 = d[:-2]
id1, id2 = d[-2], d[-1]
for key2, value2 in tts_data.items():
d = key2.split("-")
words2 = d[:-2]
id3, id4 = d[-2], d[-1]
if all([w1 == w2 for w1, w2 in zip(words1, words2)]):
speaker_to_tts_dtw_dists[f"{'-'.join(words1)}"].append((f"{id1}-{id2}_{id3}-{id4}", dtw_distance(value1, value2)))
return speaker_to_tts_dtw_dists
#TODO i think this is also gr8
# but like figure out how its doing
# bc dict format and stuff,
# working keying by word index instead of word text, ***********
# and for 1 wd or 3+ wd units...
def tts_cdist():
tts_dist_to_cluster = defaultdict(list)
for words1, datas1 in kmedoids_cluster_dists.items():
for d1 in datas1:
cluster, sp_id1, arr = d1
for words2, datas2 in speaker_to_tts_dtw_dists.items():
for d2 in datas2:
ids, dist = d2
sp_id2, tts_alfur = ids.split("_")
if sp_id1 == sp_id2 and words1 == words2:
tts_dist_to_cluster[f"{words1}-{cluster}"].append(dist)
tts_mean_dist_to_cluster = {
key: np.mean(value) for key, value in tts_dist_to_cluster.items()
}
return tts_mean_dist_to_cluster
# TODO check if anything uses this?
def get_audio_part(start_time, end_time, id, path):
"""
Returns a dictionary of RMSE values for a given sentence.
"""
f = os.path.join(path, id + ".wav")
audio, sr = librosa.load(f, sr=16000)
segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
return segment
def plot_one_cluster(words,feature,speech_data,seg_aligns,cluster_id,tts_data=None,tts_align=None,voice=None):
#(speech_data, tts_data, tts_align, words, seg_aligns, cluster_id, voice):
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
cc = 0
fig = plt.figure(figsize=(10, 5))
if feature.lower() in ['pitch','f0']:
fname = 'Pitch'
ffunc = lambda x: [p for p,e in x]
elif feature.lower() in ['energy', 'rmse']:
fname = 'Energy'
ffunc = lambda x: [e for p,e in x]
else:
print('problem with the figure')
return fig
plt.title(f"{words} - {fname} - Cluster {cluster_id}")
for k,v in speech_data.items():
spk = k.split('**')[1]
word_times = seg_aligns[k]
feats = ffunc(v)
# datapoint interval is 0.005 seconds
feat_xvals = [x*0.005 for x in range(len(feats))]
# centre around the first word boundary -
# if 3+ words, too bad.
if len(word_times)>1:
realign = np.mean([word_times[0][2],word_times[1][1]])
feat_xvals = [x - realign for x in feat_xvals]
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
if len(word_times)>2:
for i in range(1,len(word_times)-1):
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
plt.scatter(feat_xvals, feats, color=colors[cc], label=f"Speaker {spk}")
cc += 1
if cc >= len(colors):
cc=0
if voice:
tfeats = [p for p,e in tts_data]
t_xvals = [x*0.005 for x in range(len(tfeats))]
if len(tts_align)>1:
realign = np.mean([tts_align[0][2],tts_align[1][1]])
t_xvals = [x - realign for x in t_xvals]
tts_align = [(w,s-realign,e-realign) for w,s,e in tts_align]
if len(tts_align)>2:
for i in range(1,len(tts_align)-1):
bound_line = np.mean([tts_align[i][2],tts_align[i+1][1]])
plt.axvline(x=bound_line, color="black", linestyle='--', linewidth=1, label=f"TTS -> {tts_align[i+1][0]}")
plt.scatter(t_xvals, tfeats, color="black", label=f"TTS {voice}")
#plt.legend()
#plt.show()
return fig