File size: 15,017 Bytes
779c244
53792d8
 
779c244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366ecce
 
 
779c244
 
 
 
366ecce
779c244
366ecce
53792d8
 
 
 
 
366ecce
53792d8
 
779c244
53792d8
779c244
366ecce
 
 
779c244
 
53792d8
779c244
 
366ecce
53792d8
779c244
 
53792d8
779c244
 
53792d8
779c244
53792d8
 
779c244
 
53792d8
779c244
 
 
53792d8
779c244
53792d8
 
779c244
 
 
 
 
366ecce
53792d8
 
 
 
 
 
 
 
 
366ecce
779c244
 
 
 
366ecce
779c244
366ecce
779c244
53792d8
 
 
 
366ecce
53792d8
779c244
 
53792d8
779c244
53792d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366ecce
779c244
 
 
 
53792d8
 
 
366ecce
 
 
53792d8
 
 
366ecce
 
53792d8
 
 
 
 
779c244
366ecce
53792d8
366ecce
53792d8
 
 
 
 
 
 
366ecce
 
779c244
53792d8
 
366ecce
779c244
 
 
 
 
 
 
 
 
 
 
53792d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
779c244
 
 
 
53792d8
779c244
 
 
 
 
 
 
53792d8
366ecce
53792d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
779c244
53792d8
 
a894787
 
 
 
 
0d67145
366ecce
 
 
 
 
0d67145
366ecce
 
 
a894787
0d67145
53792d8
779c244
 
366ecce
 
 
 
 
 
 
 
 
 
 
779c244
53792d8
 
 
 
 
 
 
779c244
366ecce
779c244
53792d8
 
779c244
366ecce
 
 
779c244
366ecce
53792d8
 
 
 
 
779c244
53792d8
779c244
53792d8
 
779c244
 
53792d8
779c244
53792d8
366ecce
 
 
53792d8
366ecce
 
 
 
53792d8
 
366ecce
779c244
53792d8
0d67145
 
779c244
 
 
 
53792d8
 
779c244
 
 
53792d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
779c244
 
 
53792d8
 
 
 
 
 
 
779c244
53792d8
 
 
 
 
 
 
 
 
779c244
53792d8
 
 
 
 
 
 
 
 
 
 
 
779c244
 
 
 
 
 
 
 
 
 
 
366ecce
 
53792d8
8827531
 
53792d8
366ecce
 
 
 
 
 
 
 
 
 
 
a894787
 
 
 
 
 
0d67145
366ecce
0d67145
366ecce
0d67145
 
 
 
 
366ecce
0d67145
8594b98
0d67145
 
 
 
8594b98
0d67145
366ecce
0d67145
 
 
 
366ecce
 
 
0d67145
366ecce
 
 
 
0d67145
366ecce
 
 
 
 
0d67145
 
 
 
 
 
 
 
 
 
779c244
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import soundfile as sf
from collections import defaultdict
from dtw import dtw
from sklearn_extra.cluster import KMedoids
from copy import deepcopy
import os, librosa, json


# based on original implementation by 
# https://colab.research.google.com/drive/1RApnJEocx3-mqdQC2h5SH8vucDkSlQYt?authuser=1#scrollTo=410ecd91fa29bc73
# by magnús freyr morthens 2023 supported by rannís nsn



def z_score(x, mean, std):
    return (x - mean) / std


# given a sentence and list of its speakers + their alignment files,
# return a dictionary of word alignments
def get_word_aligns(norm_sent, aln_paths):
    """
    Returns a dictionary of word alignments for a given sentence.
    """
    word_aligns = defaultdict(list)
    slist = norm_sent.split(" ")
    
    for spk,aln_path in aln_paths:
        with open(aln_path) as f:
            lines = f.read().splitlines()
        lines = [l.split('\t') for l in lines]
        try:
            assert len(lines) == len(slist)
            word_aligns[spk] = [(w,float(s),float(e)) for w,s,e in lines]
        except:
            print(slist, lines, "<---- something didn't match")
    return word_aligns
             
    

#TODO pass whole path    
def get_pitches(start_time, end_time, fpath):
    """
    Returns an array of pitch values for a given speech.
    Reads from .f0 file of Time, F0, IsVoiced
    """
    
    with open(fpath) as f:
        lines = f.read().splitlines()
        lines = [[float(x) for x in line.split()] for line in lines]    # split lines into floats
        pitches = []
        

        # find the mean of all pitches in the whole sentence
        mean = np.mean([line[1] for line in lines if line[2] != -1])
        # find the std of all pitches in the whole sentence
        std = np.std([line[1] for line in lines if line[2] != -1])


        for line in lines:
            time, pitch, is_pitch = line
            
            if start_time <= time <= end_time:
                if is_pitch:
                    pitches.append(z_score(pitch, mean, std))
                else:
                    #pitches.append(z_score(fifth_percentile, mean, std))
                    pitches.append(-0.99)
    
    return pitches
    
    

# TODO take whole path
# jcheng used energy from esps get_f0
# get f0 says (?) :
#The RMS value of each record is computed based on a 30 msec hanning
#window with its left edge placed 5 msec before the beginning of the
#frame.
# jcheng z-scored the energys, per file.
# TODO: implement that. ?
# not sure librosa provides hamming window in rms function directly
# TODO handle audio that not originally .wav
def get_rmse(start_time, end_time, wpath):
    """
    Returns an array of RMSE values for a given speech.
    """
    
    audio, sr = librosa.load(wpath, sr=16000)
    segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
    rmse = librosa.feature.rms(y=segment,frame_length=480,hop_length=80)#librosa.feature.rms(y=segment)
    rmse = rmse[0]
    #idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
    return rmse#[idx]


# may be unnecessary depending how rmse and pitch window/hop are calculated already
def downsample_rmse2pitch(rmse,pitch_len):
    idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
    return rmse[idx]

    

# parse user input string to usable word indices for the sentence
# TODO handle cases
def parse_word_indices(start_end_word_index):
    ixs = start_end_word_index.split('-')
    if len(ixs) == 1:
        s = int(ixs[0])
        e = int(ixs[0])
    else:
        s = int(ixs[0])
        e = int(ixs[-1])
    return s-1,e-1


# take any (1stword, lastword) or (word) 
#   unit and prepare data for that unit
def get_data(norm_sent,path_key,start_end_word_index):
    """
    Returns a dictionary of pitch, rmse, and spectral centroids values for a given sentence/word combinations.
    """
    
    s_ix, e_ix = parse_word_indices(start_end_word_index)
    words = '_'.join(norm_sent.split(' ')[s_ix:e_ix+1])
    
    align_paths = [(spk,pdict['aln']) for spk,pdict in path_key]
    word_aligns = get_word_aligns(norm_sent, align_paths)
    
    data = defaultdict(list)
    align_data = defaultdict(list)

    for spk, pdict in path_key:
        word_al = word_aligns[spk]
        start_time = word_al[s_ix][1]
        end_time = word_al[e_ix][2]

        seg_aligns =  word_al[s_ix:e_ix+1]
        seg_aligns = [(w,round(s-start_time,2),round(e-start_time,2)) for w,s,e in seg_aligns]
                    
        pitches = get_pitches(start_time, end_time, pdict['f0'])
        
        rmses = get_rmse(start_time, end_time, pdict['wav'])
        rmses = downsample_rmse2pitch(rmses,len(pitches))
        #spectral_centroids = get_spectral_centroids(start_time, end_time, id, wav_dir, len(pitches))
            
        pitches_cpy = np.array(deepcopy(pitches))
        rmses_cpy = np.array(deepcopy(rmses))
        d = [[p, r] for p, r in zip(pitches_cpy, rmses_cpy)]
        #words = "-".join(word_combs)
        data[f"{words}**{spk}"] = d
        align_data[f"{words}**{spk}"] = seg_aligns
                
    return words, data, align_data

    

def dtw_distance(x, y):
    """
    Returns the DTW distance between two pitch sequences.
    """
    
    alignment = dtw(x, y, keep_internals=True)
    return alignment.normalizedDistance
    
    
    
# recs is a sorted list of rec IDs
# all recs/data contain the same words
# rec1 and rec2 can be the same
def pair_dists(data,words,recs):

    dtw_dists = []
    
    for rec1 in recs:
        key1 = f'{words}**{rec1}'
        val1 = data[key1]
        for rec2 in recs:
            key2 = f'{words}**{rec2}'
            val2 = data[key2]
            dtw_dists.append((f"{rec1}**{rec2}", dtw_distance(val1, val2)))
            
    return dtw_dists



# TODO 
# make n_clusters a param with default 3
def kmedoids_clustering(X):
    kmedoids = KMedoids(n_clusters=3, random_state=0).fit(X)
    y_km = kmedoids.labels_
    return y_km, kmedoids



def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voice):

    
    tts_info = []
    for label in set([c for r,c in clusters]):
        recs = [r for r,c in clusters if c==label]
        dists = []
        for rec in recs: 
            key = f'{words}**{rec}'
            dists.append(dtw_distance(tts_data, speech_data[key]))
        tts_info.append((label,np.nanmean(dists)))
        
    tts_info = sorted(tts_info,key = lambda x: x[1])
    best_cluster = tts_info[0][0]
    best_cluster_score = tts_info[0][1]
    
    matched_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==best_cluster}

    # now do graphs of matched_data with tts_data
    # and report best_cluster_score
    
    mid_cluster = tts_info[1][0]
    mid_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==mid_cluster}
    bad_cluster = tts_info[2][0]
    bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
    
    #tts_fig_p = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
    tts_fig_p = plot_one_cluster(words,'pitch',matched_data,seg_aligns,cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
    fig_mid_p = plot_one_cluster(words,'pitch',mid_data,seg_aligns,cluster)
    fig_bad_p = plot_one_cluster(words,'pitch',bad_data,seg_aligns,cluster)

    
    tts_fig_e = plot_one_cluster(words,'rmse',matched_data,seg_aligns,cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
    fig_mid_e = plot_one_cluster(words,'rmse',mid_data,seg_aligns,cluster)
    fig_bad_e = plot_one_cluster(words,'rmse',bad_data,seg_aligns,cluster)

    return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
    


def gp(d,s,x):
    return os.path.join(d, f'{s}.{x}')

def gen_tts_paths(tdir,voices):
    plist = [(v, {'wav': gp(tdir,v,'wav'), 'aln': gp(tdir,v,'tsv'), 'f0': gp(tdir,v,'f0')}) for v in voices]
    return plist
    
def gen_h_paths(wdir,adir,f0dir,spks):
    plist = [(s, {'wav': gp(wdir,s,'wav'), 'aln': gp(adir,s,'tsv'), 'f0': gp(f0dir,s,'f0')}) for s in spks]
    return plist
    

# since clustering strictly operates on X,
#  once reduce a duration metric down to pair-distances,
# it no longer matters that duration and pitch/energy had different dimensionality
# TODO option to dtw on 3 feats pitch/ener/dur separately
# check if possible cluster with 3dim distance mat? 
# or can it not take that input in multidimensional space
#  then the 3 dists can still be averaged to flatten, if appropriately scaled

def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, tts_sent_dir, voices, start_end_word_index):

    h_spk_ids = sorted(h_spk_ids)
    nsents = len(h_spk_ids)

    h_all_paths = gen_h_paths(h_wav_dir,h_align_dir,h_f0_dir,h_spk_ids)

    words, h_data, h_seg_aligns = get_data(norm_sent,h_all_paths,start_end_word_index)

    dtw_dists = pair_dists(h_data,words,h_spk_ids) 
    
    kmedoids_cluster_dists = []
            
    X = [d[1] for d in dtw_dists]
    X = [X[i:i+nsents] for i in range(0, len(X), nsents)]
    X = np.array(X)
    
    y_km, kmedoids = kmedoids_clustering(X)
    #plot_clusters(X, y_km, words)
    #c1, c2, c3 = [X[np.where(kmedoids.labels_ == i)] for i in range(3)]

    result = zip(X, kmedoids.labels_)
    groups = [[r,c] for r,c in zip(h_spk_ids,kmedoids.labels_)]

    
    tts_all_paths = gen_tts_paths(tts_sent_dir, voices)
    _, tts_data, tts_seg_aligns = get_data(norm_sent,tts_all_paths,start_end_word_index)
    
    for v in voices:
        voice_data = tts_data[f"{words}**{v}"]
        voice_align = tts_seg_aligns[f"{words}**{v}"]
               
        #tts_data, tts_align = get_one_tts_data(tts_sent_dir,v,norm_sent,start_end_word_index)
       
    # match the data with a cluster -----
        best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e = match_tts(groups, h_data, voice_data, voice_align, words, h_seg_aligns,v)

    # only supports one voice at a time currently
    return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p,  tts_fig_e, fig_mid_e, fig_bad_e
    #return words, kmedoids_cluster_dists, group




# TODO there IS sth for making tts_data
# but im probably p much on my own rlly for that.



# TODO this one is v v helpful.
# but mind if i adjusted a dictionaries earlier.
def spks_all_cdist():
    speaker_to_tts_dtw_dists = defaultdict(list)

    for key1, value1 in data.items():
        d = key1.split("-")
        words1 = d[:-2]
        id1, id2 = d[-2], d[-1]
        for key2, value2 in tts_data.items():
            d = key2.split("-")
            words2 = d[:-2]
            id3, id4 = d[-2], d[-1]
            if all([w1 == w2 for w1, w2 in zip(words1, words2)]):
                speaker_to_tts_dtw_dists[f"{'-'.join(words1)}"].append((f"{id1}-{id2}_{id3}-{id4}", dtw_distance(value1, value2)))
    return speaker_to_tts_dtw_dists



#TODO i think this is also gr8
# but like figure out how its doing
# bc dict format and stuff,
# working keying by word index instead of word text, ***********
# and for 1 wd or 3+ wd units...
def tts_cdist():
    tts_dist_to_cluster = defaultdict(list)

    for words1, datas1 in kmedoids_cluster_dists.items():
        for d1 in datas1:
            cluster, sp_id1, arr = d1
            for words2, datas2 in speaker_to_tts_dtw_dists.items():
                for d2 in datas2:
                    ids, dist = d2
                    sp_id2, tts_alfur = ids.split("_")
                    if sp_id1 == sp_id2 and words1 == words2:
                        tts_dist_to_cluster[f"{words1}-{cluster}"].append(dist)

    tts_mean_dist_to_cluster = {
        key: np.mean(value) for key, value in tts_dist_to_cluster.items()
    }
    return tts_mean_dist_to_cluster






# TODO check if anything uses this?
def get_audio_part(start_time, end_time, id, path):
    """
    Returns a dictionary of RMSE values for a given sentence.
    """

    f = os.path.join(path, id + ".wav")
    audio, sr = librosa.load(f, sr=16000)
    segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
    return segment



def plot_one_cluster(words,feature,speech_data,seg_aligns,cluster_id,tts_data=None,tts_align=None,voice=None):
#(speech_data, tts_data, tts_align, words, seg_aligns, cluster_id, voice):
    colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
    cc = 0
    fig = plt.figure(figsize=(10, 5))
    
    if feature.lower() in ['pitch','f0']:
        fname = 'Pitch'
        ffunc = lambda x: [p for p,e in x]
    elif feature.lower() in ['energy', 'rmse']:
        fname = 'Energy'
        ffunc = lambda x: [e for p,e in x]
    else:
        print('problem with the figure')
        return fig
    
    plt.title(f"{words} - {fname} - Cluster {cluster_id}")
    for k,v in speech_data.items():

        spk = k.split('**')[1]

        word_times = seg_aligns[k]
        
        
        feats = ffunc(v)
        # datapoint interval is 0.005 seconds
        feat_xvals = [x*0.005 for x in range(len(feats))]

        # centre around the first word boundary -
        # if 3+ words, too bad.
        if len(word_times)>1:
            realign = np.mean([word_times[0][2],word_times[1][1]])
            feat_xvals = [x - realign for x in feat_xvals]
            word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
            plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")

        if len(word_times)>2:
            for i in range(1,len(word_times)-1):
                bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
                plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
                
        plt.scatter(feat_xvals, feats, color=colors[cc], label=f"Speaker {spk}")
        cc += 1
        if cc >= len(colors):
            cc=0

    if voice:
        tfeats = [p for p,e in tts_data]
        t_xvals = [x*0.005 for x in range(len(tfeats))]
    
        if len(tts_align)>1:
            realign = np.mean([tts_align[0][2],tts_align[1][1]])
            t_xvals = [x - realign for x in t_xvals]
            tts_align = [(w,s-realign,e-realign) for w,s,e in tts_align]
        
        if len(tts_align)>2:
            for i in range(1,len(tts_align)-1):
                bound_line = np.mean([tts_align[i][2],tts_align[i+1][1]])
                plt.axvline(x=bound_line, color="black", linestyle='--', linewidth=1, label=f"TTS -> {tts_align[i+1][0]}")
        plt.scatter(t_xvals, tfeats, color="black", label=f"TTS {voice}")


    #plt.legend()
    #plt.show()
            

    return fig