File size: 3,224 Bytes
f0fa26d
51c86c4
f0fa26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53792d8
13fa91a
 
53792d8
a894787
f0fa26d
 
53792d8
 
 
28363d1
53792d8
f0fa26d
 
 
a894787
 
f0fa26d
 
 
 
a894787
f0fa26d
e8d7f64
f0fa26d
 
 
 
2dfee05
53792d8
2dfee05
53792d8
 
28363d1
2dfee05
 
28363d1
2dfee05
53792d8
 
2dfee05
f0fa26d
 
53792d8
 
 
a894787
 
 
53792d8
 
a894787
f0fa26d
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
import subprocess, os
import scripts.runSQ


#https://huggingface.co/spaces/clr/prosalign/blob/main/app.py


def setup():
    r0 = subprocess.run(["pwd"], capture_output=True, text=True)
    print('PWD::', r0.stdout)
    r1 = subprocess.run(["wget", "https://github.com/google/REAPER/archive/refs/heads/master.zip"], capture_output=True, text=True)
    print(r1.stdout)
    subprocess.run(["unzip", "./master.zip"])
    subprocess.run(["mv", "REAPER-master", "REAPER"])
    subprocess.run(["rm", "./master.zip"])
    os.chdir('./REAPER')
    subprocess.run(["mkdir", "build"])
    os.chdir('./build')
    r2 = subprocess.run(["cmake", ".."], capture_output=True, text=True)
    print(r2.stdout)
    r3 = subprocess.run(["make"], capture_output=True, text=True)
    print(r3.stdout)
    
    os.chdir('../..')
    r9 = subprocess.run(["ls", "-la"], capture_output=True, text=True)
    print('LS::', r9.stdout)

                        
print('about to setup')
setup()


def f1(voices, sent, indices):
    #tts_audio, tts_score, graph = scripts.runSQ.run(sent, voices, indices)
    tts_audio, tts_score, graph = scripts.runSQ.run(sent, [voices], indices)
    score_report = f'Difference from TTS to real speech: {round(tts_score,2)}'
    return (tts_audio, score_report, tts_graph, mid_graph, bad_graph)


def label_indices(sentence):
    sentence = scripts.runSQ.snorm(sentence)
    sentence = sentence.split(' ')
    labelled = [(f'{word} {i+1} ', str(i+1)) for i, word in enumerate(sentence)]
    return labelled



temp_sentences = scripts.runSQ.snorm.create_temp_sent_list()

bl = gr.Blocks()
with bl:


    #temp_sentences = ['Litlaus græn hugmynd?','Var það ekki nóg?', 'Ef svo er hvað heita þau þá?','Eru maríuhænur á Íslandi?']
    
    voices = ['Alfur','Dilja']
    # currently i only get json speech marks for those two. 
    # supposedly they also provided for Karl, Dora, but i dont even get their wavs
    # i get everyone elses wavs tho
    
    #with gr.Row():
        #with gr.Column(scale=4):
    temp_sentmenu = gr.Dropdown(temp_sentences, label="Sentence")
        #voiceselect = gr.CheckboxGroup(voices, label="TTS voice",value='Alfur')

    marked_sentence = gr.HighlightedText(interactive=False,label="Word selection key",color_map = {str(i):"#dcfce7" for i in range(333)})

    with gr.Row():
        spanselect = gr.Textbox(value='1-3',label="Select words",info='Enter the index of the word(s) to analyse, according to the key above. It can be a single word: 4 or a span of words separated by a dash: 2-3')
        voiceselect = gr.Radio(voices, label="TTS voice",value='Alfur')

        #with gr.Column(scale=1):
        temp_button = gr.Button(value="Run with selected options")
    
    
    tts_output = gr.Audio(interactive=False)
    report_score = gr.Markdown('Difference from TTS to real speech:')
    pl1 = gr.Plot()
    with gr.Row():
        pl2 = gr.Plot()
        pl3 = gr.Plot()

    temp_sentmenu.input(label_indices,temp_sentmenu,marked_sentence)
    temp_button.click(f1,[voiceselect,temp_sentmenu,spanselect],[tts_output,report_score,pl1,pl2,pl3])
    
    
if __name__ == "__main__":
    bl.launch()