File size: 16,241 Bytes
779c244 53792d8 779c244 f484865 779c244 366ecce 779c244 366ecce 779c244 366ecce 53792d8 366ecce 53792d8 779c244 53792d8 779c244 366ecce 779c244 53792d8 779c244 366ecce 53792d8 779c244 53792d8 779c244 f484865 779c244 f484865 53792d8 b0c291c 779c244 53792d8 779c244 f484865 53792d8 779c244 b5d5d43 779c244 53792d8 f484865 779c244 366ecce f484865 53792d8 f484865 53792d8 366ecce 53792d8 779c244 53792d8 779c244 53792d8 8d1fcc3 53792d8 366ecce 779c244 53792d8 366ecce 53792d8 99c2d01 53792d8 366ecce 53792d8 779c244 366ecce 53792d8 366ecce 53792d8 366ecce 99c2d01 779c244 99c2d01 53792d8 366ecce 779c244 53792d8 779c244 53792d8 779c244 53792d8 366ecce 53792d8 779c244 53792d8 a894787 0d67145 366ecce 07c85d3 366ecce 0d67145 07c85d3 0d67145 53792d8 779c244 366ecce 779c244 53792d8 779c244 366ecce 779c244 53792d8 779c244 366ecce 99c2d01 779c244 366ecce 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 366ecce 99c2d01 366ecce 53792d8 366ecce 53792d8 366ecce 779c244 99c2d01 53792d8 99c2d01 0d67145 779c244 07c85d3 99c2d01 cfb1726 8d1fcc3 07c85d3 8d1fcc3 07c85d3 8d1fcc3 779c244 cfb1726 8d1fcc3 07c85d3 779c244 cfb1726 779c244 366ecce 53792d8 8827531 07c85d3 8827531 53792d8 366ecce 1efac6a 366ecce 1efac6a 366ecce 07c85d3 366ecce 8d1fcc3 366ecce 8d1fcc3 a894787 366ecce 0d67145 366ecce 07c85d3 cfb1726 a4ed697 cfb1726 a4ed697 07c85d3 0d67145 366ecce 1efac6a 366ecce cfb1726 0d67145 07c85d3 0d67145 779c244 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import soundfile as sf
from collections import defaultdict
from dtw import dtw
from sklearn_extra.cluster import KMedoids
from scipy import stats
from copy import deepcopy
import os, librosa, json
# based on original implementation by
# https://colab.research.google.com/drive/1RApnJEocx3-mqdQC2h5SH8vucDkSlQYt?authuser=1#scrollTo=410ecd91fa29bc73
# by magnús freyr morthens 2023 supported by rannís nsn
def z_score(x, mean, std):
return (x - mean) / std
# given a sentence and list of its speakers + their alignment files,
# return a dictionary of word alignments
def get_word_aligns(norm_sent, aln_paths):
"""
Returns a dictionary of word alignments for a given sentence.
"""
word_aligns = defaultdict(list)
slist = norm_sent.split(" ")
for spk,aln_path in aln_paths:
with open(aln_path) as f:
lines = f.read().splitlines()
lines = [l.split('\t') for l in lines]
try:
assert len(lines) == len(slist)
word_aligns[spk] = [(w,float(s),float(e)) for w,s,e in lines]
except:
print(slist, lines, "<---- something didn't match")
return word_aligns
def get_pitches(start_time, end_time, fpath):
"""
Returns an array of pitch values for a given speech.
Reads from .f0 file of Time, F0, IsVoiced
"""
with open(fpath) as f:
lines = f.read().splitlines()
lines = [[float(x) for x in line.split()] for line in lines] # split lines into floats
pitches = []
# find the mean of all pitches in the whole sentence
mean = np.mean([line[1] for line in lines if line[2] == 1])
# find the std of all pitches in the whole sentence
std = np.std([line[1] for line in lines if line[2] == 1])
low = min([p for t,p,v in lines if v == 1]) - 1
for line in lines:
time, pitch, is_pitch = line
if start_time <= time <= end_time:
if is_pitch == 1:
pitches.append(z_score(pitch, mean, std))
else:
pitches.append(z_score(low, mean, std))
#pitches.append(-0.99)
return pitches
# jcheng used energy from esps get_f0
# get f0 says (?) :
#The RMS value of each record is computed based on a 30 msec hanning
#window with its left edge placed 5 msec before the beginning of the
#frame.
# jcheng z-scored the energys, per file.
# TODO: implement that. ?
# not sure librosa provides hamming window in rms function directly
# TODO handle audio that not originally .wav
def get_rmse(start_time, end_time, wpath, znorm = True):
"""
Returns an array of RMSE values for a given speech.
"""
audio, sr = librosa.load(wpath, sr=16000)
hop = 80
#segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
rmse = librosa.feature.rms(y=audio,frame_length=480,hop_length=hop)
rmse = rmse[0]
if znorm:
rmse = stats.zscore(rmse)
segment = rmse[int(np.floor(start_time * sr/hop)):int(np.ceil(end_time * sr/hop))]
#idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
return segment#[idx]
# may be unnecessary depending how rmse and pitch window/hop are calculated already
def downsample_rmse2pitch(rmse,pitch_len):
idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
return rmse[idx]
# parse user input string to usable word indices for the sentence
# TODO handle more user input cases
def parse_word_indices(start_end_word_index):
ixs = start_end_word_index.split('-')
if len(ixs) == 1:
s = int(ixs[0])
e = int(ixs[0])
else:
s = int(ixs[0])
e = int(ixs[-1])
return s-1,e-1
# take any (1stword, lastword) or (word)
# unit and prepare data for that unit
def get_data(norm_sent,path_key,start_end_word_index):
"""
Returns a dictionary of pitch, rmse, and spectral centroids values for a given sentence/word combinations.
"""
s_ix, e_ix = parse_word_indices(start_end_word_index)
words = '_'.join(norm_sent.split(' ')[s_ix:e_ix+1])
align_paths = [(spk,pdict['aln']) for spk,pdict in path_key]
word_aligns = get_word_aligns(norm_sent, align_paths)
data = defaultdict(list)
align_data = defaultdict(list)
playable_audio = {}
for spk, pdict in path_key:
word_al = word_aligns[spk]
start_time = word_al[s_ix][1]
end_time = word_al[e_ix][2]
seg_aligns = word_al[s_ix:e_ix+1]
seg_aligns = [(w,round(s-start_time,2),round(e-start_time,2)) for w,s,e in seg_aligns]
pitches = get_pitches(start_time, end_time, pdict['f0'])
rmses = get_rmse(start_time, end_time, pdict['wav'])
rmses = downsample_rmse2pitch(rmses,len(pitches))
#spectral_centroids = get_spectral_centroids(start_time, end_time, id, wav_dir, len(pitches))
pitches_cpy = np.array(deepcopy(pitches))
rmses_cpy = np.array(deepcopy(rmses))
d = [[p, r] for p, r in zip(pitches_cpy, rmses_cpy)]
#words = "-".join(word_combs)
data[f"{words}**{spk}"] = d
align_data[f"{words}**{spk}"] = seg_aligns
playable_audio[spk] = (pdict['wav'], start_time, end_time)
return words, data, align_data, playable_audio
def dtw_distance(x, y):
"""
Returns the DTW distance between two pitch sequences.
"""
alignment = dtw(x, y, keep_internals=True)
return alignment.normalizedDistance
# recs is a sorted list of rec IDs
# all recs/data contain the same words
# rec1 and rec2 can be the same
def pair_dists(data,words,recs):
dtw_dists = []
for rec1 in recs:
key1 = f'{words}**{rec1}'
val1 = data[key1]
for rec2 in recs:
key2 = f'{words}**{rec2}'
val2 = data[key2]
dtw_dists.append((f"{rec1}**{rec2}", dtw_distance(val1, val2)))
return dtw_dists
# TODO
# make n_clusters a param with default 3
def kmedoids_clustering(X):
kmedoids = KMedoids(n_clusters=3, random_state=0).fit(X)
y_km = kmedoids.labels_
return y_km, kmedoids
def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voice):
tts_info = []
for label in set([c for r,c in clusters]):
recs = [r for r,c in clusters if c==label]
dists = []
for rec in recs:
key = f'{words}**{rec}'
dists.append(dtw_distance(tts_data, speech_data[key]))
tts_info.append((label,np.nanmean(dists)))
tts_info = sorted(tts_info,key = lambda x: x[1])
best_cluster = tts_info[0][0]
best_cluster_score = tts_info[0][1]
matched_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==best_cluster}
# now do graphs of matched_data with tts_data
# and report best_cluster_score
mid_cluster = tts_info[1][0]
mid_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==mid_cluster}
bad_cluster = tts_info[2][0]
bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
#tts_fig_p = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
tts_fig_p, best_cc = plot_one_cluster(words,'pitch',matched_data,seg_aligns,best_cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
fig_mid_p, mid_cc = plot_one_cluster(words,'pitch',mid_data,seg_aligns,mid_cluster)
fig_bad_p, bad_cc = plot_one_cluster(words,'pitch',bad_data,seg_aligns,bad_cluster)
tts_fig_e, _ = plot_one_cluster(words,'rmse',matched_data,seg_aligns,best_cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
fig_mid_e, _ = plot_one_cluster(words,'rmse',mid_data,seg_aligns,mid_cluster)
fig_bad_e, _ = plot_one_cluster(words,'rmse',bad_data,seg_aligns,bad_cluster)
# TODO
# not necessarily here, bc paths to audio files.
spk_cc_map = [('Best',best_cluster,best_cc), ('Mid',mid_cluster,mid_cc), ('Last',bad_cluster,bad_cc)]
#playable = audio_htmls(spk_cc_map)
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
def gp(d,s,x):
return os.path.join(d, f'{s}.{x}')
def gen_tts_paths(tdir,voices):
plist = [(v, {'wav': gp(tdir,v,'wav'), 'aln': gp(tdir,v,'tsv'), 'f0': gp(tdir,v,'f0')}) for v in voices]
return plist
def gen_h_paths(wdir,adir,f0dir,spks):
plist = [(s, {'wav': gp(wdir,s,'wav'), 'aln': gp(adir,s,'tsv'), 'f0': gp(f0dir,s,'f0')}) for s in spks]
return plist
# since clustering strictly operates on X,
# once reduce a duration metric down to pair-distances,
# it no longer matters that duration and pitch/energy had different dimensionality
# TODO option to dtw on 3 feats pitch/ener/dur separately
# check if possible cluster with 3dim distance mat?
# or can it not take that input in multidimensional space
# then the 3 dists can still be averaged to flatten, if appropriately scaled
def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, tts_sent_dir, voices, start_end_word_index):
h_spk_ids = sorted(h_spk_ids)
nsents = len(h_spk_ids)
h_all_paths = gen_h_paths(h_wav_dir,h_align_dir,h_f0_dir,h_spk_ids)
words, h_data, h_seg_aligns, h_playable = get_data(norm_sent,h_all_paths,start_end_word_index)
dtw_dists = pair_dists(h_data,words,h_spk_ids)
kmedoids_cluster_dists = []
X = [d[1] for d in dtw_dists]
X = [X[i:i+nsents] for i in range(0, len(X), nsents)]
X = np.array(X)
y_km, kmedoids = kmedoids_clustering(X)
#plot_clusters(X, y_km, words)
#c1, c2, c3 = [X[np.where(kmedoids.labels_ == i)] for i in range(3)]
result = zip(X, kmedoids.labels_)
groups = [[r,c] for r,c in zip(h_spk_ids,kmedoids.labels_)]
tts_all_paths = gen_tts_paths(tts_sent_dir, voices)
_, tts_data, tts_seg_aligns, tts_playable_segment = get_data(norm_sent,tts_all_paths,start_end_word_index)
for v in voices:
voice_data = tts_data[f"{words}**{v}"]
voice_align = tts_seg_aligns[f"{words}**{v}"]
#tts_data, tts_align = get_one_tts_data(tts_sent_dir,v,norm_sent,start_end_word_index)
# match the data with a cluster -----
best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e = match_tts(groups, h_data, voice_data, voice_align, words, h_seg_aligns,v)
audio_html = clusters_audio(groups,h_playable)
# only supports one voice at a time currently
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e, audio_html
#return words, kmedoids_cluster_dists, group
# generate html panel to play audios for each human cluster
# audios is dict {recording_id : (wav_path, seg_start_time, seg_end_time)}
def clusters_audio(clusters,audios):
html = '''<html><body>'''
for label in set([c for r,c in clusters]):
recs = [r for r,c in clusters if c==label]
html += '<div>'
html += f'<h2>Cluster {label}</h2>'
html += '<div>'
html += '<table><tbody>'
for rec in recs:
html += f'<tr><td><audio controls id="{rec}">' #width="20%">
html += f'<source src="{audios[rec][0]}#t={audios[rec][1]*60:.2f},{audios[rec][2]*60:.2f}" type="audio/wav">'
html += '</audio></td>'
html += f'<td>{rec}</td></tr>'
html += '</tbody></table>'
html += '</div>'
#html += '<div style="height:2%;background:#e7fefc"></div>'
html += '</div>'
html += '</body></html>'
return html
# find offsets to visually align start of each word for speakers in cluster
def reset_cluster_times(words,cluster_speakers,human_aligns,tts_align):
words = words.split('_')
retimes = [(words[0], 0.0)]
for i in range(len(words)-1):
gaps = [human_aligns[spk][i+1][1]-human_aligns[spk][i][1] for spk in cluster_speakers]
if tts_align:
gaps.append(tts_align[i+1][1] - tts_align[i][1])
retimes.append((words[i+1],retimes[i][1]+max(gaps)))
return retimes
# apply offsets for a speaker
def retime_speaker_xvals(retimes, speaker_aligns, speaker_xvals):
new_xvals = []
def xlim(x,i,retimes,speaker_aligns):
return (x < speaker_aligns[i+1][1]) if i+1<len(retimes) else True
for i in range(len(retimes)):
wd,st = retimes[i]
w,s,e = speaker_aligns[i]
xdiff = st-s
new_xvals += [x+xdiff for x in speaker_xvals if (x>= s) and xlim(x,i,retimes,speaker_aligns) ]
return [round(x,3) for x in new_xvals]
# interpolate NAN to break lines
def retime_xs_feats(retimes, speaker_aligns, speaker_xvals, feats):
feat_xvals = retime_speaker_xvals(retimes, speaker_aligns, speaker_xvals)
xf0 = list(zip(feat_xvals, feats))
xf = [xf0[0]]
for x,f in xf0[1:]:
lx = xf[-1][0]
if x - lx >= 0.01:
xf.append((lx+0.005,np.nan))
xf.append((x,f))
return [x for x,f in xf], [f for x,f in xf]
def plot_one_cluster(words,feature,speech_data,seg_aligns,cluster_id,tts_data=None,tts_align=None,voice=None):
#(speech_data, tts_data, tts_align, words, seg_aligns, cluster_id, voice):
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
cc = 0
spk_ccs = [] # for external display
fig = plt.figure(figsize=(10, 5))
if feature.lower() in ['pitch','f0']:
fname = 'Pitch'
ffunc = lambda x: [p for p,e in x]
pfunc = plt.scatter
elif feature.lower() in ['energy', 'rmse']:
fname = 'Energy'
ffunc = lambda x: [e for p,e in x]
pfunc = plt.plot
else:
print('problem with the figure')
return fig, []
# boundary for start of each word
retimes = reset_cluster_times(words,list(speech_data.keys()),seg_aligns,tts_align)
if len(retimes)>1:
for w,bound_line in retimes:
plt.axvline(x=bound_line, color="gray", linestyle='--', linewidth=1, label=f'Start "{w}"')
plt.title(f"{words} - {fname} - Cluster {cluster_id}")
for k,v in speech_data.items():
spk = k.split('**')[1]
word_times = seg_aligns[k]
feats = ffunc(v)
# datapoint interval is 0.005 seconds
feat_xvals = [x*0.005 for x in range(len(feats))]
feat_xvals, feats = retime_xs_feats(retimes,word_times,feat_xvals,feats)
pfunc(feat_xvals, feats, color=colors[cc], label=f"Speaker {spk}")
#feat_xvals = retime_speaker_xvals(retimes, word_times, feat_xvals)
#for w, st in reversed(retimes):
# w_xvals = [x for x in feat_xvals if x>= st]
# w_feats = feats[-(len(w_xvals)):]
# pfunc(w_xvals, w_feats, color=colors[cc])
# feat_xvals = feat_xvals[:-(len(w_xvals))]
# feats = feats[:-(len(w_xvals))]
spk_ccs.append((spk,colors[cc]))
cc += 1
if cc >= len(colors):
cc=0
if voice:
tfeats = ffunc(tts_data)
t_xvals = [x*0.005 for x in range(len(tfeats))]
t_xvals, tfeats = retime_xs_feats(retimes, tts_align, t_xvals, tfeats)
pfunc(t_xvals, tfeats, color="black", label=f"TTS {voice}")
#t_xvals = retime_speaker_xvals(retimes, tts_align, t_xvals)
#for w, st in reversed(retimes):
# tw_xvals = [x for x in t_xvals if x>= st]
# tw_feats = tfeats[-(len(tw_xvals)):]
# pfunc(tw_xvals, tw_feats, color="black")
# t_xvals = t_xvals[:-(len(tw_xvals))]
# tfeats = tfeats[:-(len(tw_xvals))]
#plt.legend()
#plt.show()
return fig, spk_ccs
|