File size: 6,397 Bytes
4749985
 
 
 
5905e2f
4749985
 
 
 
 
 
 
 
33bc045
 
 
 
 
 
 
 
4749985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
041cf4e
4749985
 
 
041cf4e
4749985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
041cf4e
4749985
 
 
 
 
 
 
 
 
 
 
 
 
041cf4e
4749985
 
 
 
 
 
 
 
 
041cf4e
4749985
 
 
 
 
 
 
 
 
 
 
041cf4e
4749985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
041cf4e
4749985
5905e2f
4749985
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from datasets import load_dataset
import requests
import gzip
import json
import streamlit as st
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from model2vec import StaticModel
import matplotlib.pyplot as plt
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from torch.nn.functional import sigmoid
from transformers_interpret import SequenceClassificationExplainer
import os

# Force all caches to writable directories
os.environ["HF_HOME"] = "/tmp/hf"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf/transformers"
os.environ["TORCH_HOME"] = "/tmp/torch"
os.environ["HF_DATASETS_CACHE"] = "/tmp/hf/datasets"
os.environ["XDG_CACHE_HOME"] = "/tmp/xdg"  # For anything else using XDG


# -- SETTINGS --
LABELS = [
    'inconclusive',
    'animals',
    'arts',
    'autos',
    'business',
    'career',
    'education',
    'fashion',
    'finance',
    'food',
    'government',
    'health',
    'hobbies',
    'home',
    'news',
    'realestate',
    'society',
    'sports',
    'tech',
    'travel'
]

label2id = {label: idx for idx, label in enumerate(LABELS)}
id2label = {idx: label for label, idx in label2id.items()}

REPO_ID = "chidamnat2002/iab_training_dataset"

@st.cache_data
def load_csv_data():
    dataset = load_dataset(REPO_ID, split="train", data_files="train_df_simple.csv")
    df = pd.DataFrame(dataset)
    return df

@st.cache_resource
def get_model_and_tokenizer():
    tokenizer = AutoTokenizer.from_pretrained("chidamnat2002/content-multilabel-iab-classifier")
    model = AutoModelForSequenceClassification.from_pretrained("chidamnat2002/content-multilabel-iab-classifier")
    return model, tokenizer

@st.cache_resource
def get_explainer():
    model, tokenizer = get_model_and_tokenizer()
    return SequenceClassificationExplainer(model, tokenizer)

# -- LOAD MODEL & EMBEDDINGS --
@st.cache_resource
def load_model():
    return StaticModel.from_pretrained("minishlab/potion-retrieval-32M")

# st.markdown("### ✨ Encode all examples")
@st.cache_resource
def encode_texts_cached(corpus):
    model = load_model()  # use cached model
    return model.encode(corpus)

@st.cache_data(show_spinner="Embedding reference", max_entries=50)
def encode_reference(text: str):
    model = load_model()
    return model.encode([text])[0]

@st.cache_resource
def get_data_and_embeddings():
    df = load_csv_data()
    texts = df["text"].to_list()
    prior_labels = df['label'].to_list()
    X = encode_texts_cached(texts)
    return texts, prior_labels, X


st.set_page_config(page_title="IAB Classifier App", layout="wide")
st.title("IAB Classifier App")

# Load data
texts, prior_labels, X = get_data_and_embeddings()
st.markdown("### Reference sentence for similarity")
reference = st.text_area("Type something like 'business related'")
prediction_choice = st.checkbox("try our iab model prediction for this")


def predict_content_multilabel(text, threshold=0.5, verbose=False):
    model, tokenizer = get_model_and_tokenizer()
    model.eval()
    text = text.replace("-", " ")
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=256)
        logits = model(**inputs).logits
        probs = sigmoid(logits).squeeze().cpu().numpy()

        predicted_labels = [(id2label[i], round(float(p), 3)) for i, p in enumerate(probs) if p >= threshold]
        probs_res = [prob for prob in probs if prob >= threshold]

        if verbose:
            st.write(f"Text: {text}")
            st.write("Predicted Labels:")

        return predicted_labels

if reference:
    st.write("Labels loaded:", len(prior_labels))

    query = encode_reference(reference)
    similarity = cosine_similarity([query], X)[0]

    df_emb = pd.DataFrame({
        "text": texts,
        "sim": similarity,
        "label": prior_labels,
    }).sort_values("sim", ascending=False)

    top_size = st.slider("number of similar items", 1, 100, 5)
    top_candidates = [(row["text"], row["sim"], row["label"]) for row in df_emb.to_dict(orient="records")][:top_size]

    st.markdown("### Similar example(s)")
    if not top_candidates:
        st.info("No more similar examples.")
    else:
        st.write(pd.DataFrame(top_candidates, columns=['text', 'similarity_score', 'label']))
        top_labelled_df = pd.DataFrame(top_candidates, columns=['text', 'similarity_score', 'label'])

        preds = dict(predict_content_multilabel(reference, threshold=0.2))
        st.write(f"preds = {preds}")

        col1, col2 = st.columns(2)

        # Left: What training data says
        with col1:
            st.markdown("#### What Training Data Says")
            fig1, ax1 = plt.subplots()
            top_labelled_df['label'].value_counts(normalize=True).sort_values().plot(kind='barh', ax=ax1, color="lightcoral")
            ax1.set_title("Label Distribution")
            ax1.set_xlabel("Proportion")
            ax1.grid(True, axis='x', linestyle='--', alpha=0.5)
            st.pyplot(fig1)

        # Right: What model predicts
        with col2:
            st.markdown("#### Model Predictions")
            if len(preds) == 0 or not prediction_choice:
                st.write("Model is unsure")
            else:
                fig2, ax2 = plt.subplots()
                pd.Series(preds).sort_values().plot.barh(color="skyblue", ax=ax2)
                ax2.set_title("Predicted Probabilities")
                ax2.set_xlabel("Probability")
                ax2.grid(True, axis='x', linestyle='--', alpha=0.5)
                st.pyplot(fig2)

if prediction_choice and reference:
    st.markdown("### Model Explanation (Top Predicted Class)")

    explainer = get_explainer()
    attributions = explainer(reference)

    st.markdown(f"**Predicted label:** `{explainer.predicted_class_name}`")

    # Token importance bar chart
    fig, ax = plt.subplots(figsize=(12, 1.5))
    tokens, scores = zip(*attributions)
    ax.bar(range(len(scores)), scores)
    ax.set_xticks(range(len(tokens)))
    ax.set_xticklabels(tokens, rotation=90)
    ax.set_ylabel("Attribution Score")
    ax.set_title("Token Attribution (Integrated Gradients)")
    st.pyplot(fig)

    # HTML Highlighted Text
    st.markdown("#### Highlighted Text Importance")
    html_output = explainer.visualize().data

    # Render in Streamlit
    st.markdown(html_output, unsafe_allow_html=True)