Chidam Gopal
commited on
iab classifier app
Browse files- .gitignore +166 -0
- requirements.txt +11 -3
- src/streamlit_app.py +186 -38
.gitignore
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
110 |
+
.pdm.toml
|
111 |
+
.pdm-python
|
112 |
+
.pdm-build/
|
113 |
+
|
114 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
115 |
+
__pypackages__/
|
116 |
+
|
117 |
+
# Celery stuff
|
118 |
+
celerybeat-schedule
|
119 |
+
celerybeat.pid
|
120 |
+
|
121 |
+
# SageMath parsed files
|
122 |
+
*.sage.py
|
123 |
+
|
124 |
+
# Environments
|
125 |
+
.env
|
126 |
+
.venv
|
127 |
+
env/
|
128 |
+
venv/
|
129 |
+
ENV/
|
130 |
+
env.bak/
|
131 |
+
venv.bak/
|
132 |
+
eval_venv/
|
133 |
+
|
134 |
+
# Spyder project settings
|
135 |
+
.spyderproject
|
136 |
+
.spyproject
|
137 |
+
|
138 |
+
# Rope project settings
|
139 |
+
.ropeproject
|
140 |
+
|
141 |
+
# mkdocs documentation
|
142 |
+
/site
|
143 |
+
|
144 |
+
# mypy
|
145 |
+
.mypy_cache/
|
146 |
+
.dmypy.json
|
147 |
+
dmypy.json
|
148 |
+
|
149 |
+
# Pyre type checker
|
150 |
+
.pyre/
|
151 |
+
|
152 |
+
# pytype static type analyzer
|
153 |
+
.pytype/
|
154 |
+
|
155 |
+
# Cython debug symbols
|
156 |
+
cython_debug/
|
157 |
+
|
158 |
+
# PyCharm
|
159 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
160 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
161 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
162 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
163 |
+
#.idea/
|
164 |
+
.python-version
|
165 |
+
models/
|
166 |
+
data/
|
requirements.txt
CHANGED
@@ -1,3 +1,11 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
numpy
|
4 |
+
scikit-learn
|
5 |
+
model2vec
|
6 |
+
mohtml
|
7 |
+
streamlit
|
8 |
+
matplotlib
|
9 |
+
transformers-interpret
|
10 |
+
datasets
|
11 |
+
huggingface_hub
|
src/streamlit_app.py
CHANGED
@@ -1,40 +1,188 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
|
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
import requests
|
3 |
+
import gzip
|
4 |
+
import json
|
5 |
import streamlit as st
|
6 |
+
import pandas as pd
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
from model2vec import StaticModel
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
+
import torch
|
12 |
+
from torch.nn.functional import sigmoid
|
13 |
+
from transformers_interpret import SequenceClassificationExplainer
|
14 |
+
|
15 |
+
|
16 |
+
# -- SETTINGS --
|
17 |
+
LABELS = [
|
18 |
+
'inconclusive',
|
19 |
+
'animals',
|
20 |
+
'arts',
|
21 |
+
'autos',
|
22 |
+
'business',
|
23 |
+
'career',
|
24 |
+
'education',
|
25 |
+
'fashion',
|
26 |
+
'finance',
|
27 |
+
'food',
|
28 |
+
'government',
|
29 |
+
'health',
|
30 |
+
'hobbies',
|
31 |
+
'home',
|
32 |
+
'news',
|
33 |
+
'realestate',
|
34 |
+
'society',
|
35 |
+
'sports',
|
36 |
+
'tech',
|
37 |
+
'travel'
|
38 |
+
]
|
39 |
+
|
40 |
+
label2id = {label: idx for idx, label in enumerate(LABELS)}
|
41 |
+
id2label = {idx: label for label, idx in label2id.items()}
|
42 |
+
|
43 |
+
REPO_ID = "chidamnat2002/iab_training_dataset"
|
44 |
+
|
45 |
+
@st.cache_data
|
46 |
+
def load_csv_data():
|
47 |
+
dataset = load_dataset(REPO_ID, split="train", data_files="train_df_simple.csv")
|
48 |
+
df = pd.DataFrame(dataset)
|
49 |
+
return df
|
50 |
+
|
51 |
+
@st.cache_resource
|
52 |
+
def get_model_and_tokenizer():
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("chidamnat2002/content-multilabel-iab-classifier")
|
54 |
+
model = AutoModelForSequenceClassification.from_pretrained("chidamnat2002/content-multilabel-iab-classifier")
|
55 |
+
return model, tokenizer
|
56 |
+
|
57 |
+
@st.cache_resource
|
58 |
+
def get_explainer():
|
59 |
+
model, tokenizer = get_model_and_tokenizer()
|
60 |
+
return SequenceClassificationExplainer(model, tokenizer)
|
61 |
+
|
62 |
+
# -- LOAD MODEL & EMBEDDINGS --
|
63 |
+
@st.cache_resource
|
64 |
+
def load_model():
|
65 |
+
return StaticModel.from_pretrained("minishlab/potion-retrieval-32M")
|
66 |
+
|
67 |
+
# st.markdown("### β¨ Encode all examples")
|
68 |
+
@st.cache_resource
|
69 |
+
def encode_texts_cached(corpus):
|
70 |
+
model = load_model() # use cached model
|
71 |
+
return model.encode(corpus)
|
72 |
+
|
73 |
+
@st.cache_data(show_spinner="Embedding reference", max_entries=50)
|
74 |
+
def encode_reference(text: str):
|
75 |
+
model = load_model()
|
76 |
+
return model.encode([text])[0]
|
77 |
+
|
78 |
+
@st.cache_resource
|
79 |
+
def get_data_and_embeddings():
|
80 |
+
df = load_csv_data()
|
81 |
+
texts = df["text"].to_list()
|
82 |
+
prior_labels = df['label'].to_list()
|
83 |
+
X = encode_texts_cached(texts)
|
84 |
+
return texts, prior_labels, X
|
85 |
+
|
86 |
+
|
87 |
+
st.set_page_config(page_title="IAB Classifier App", layout="wide")
|
88 |
+
st.title("π§ IAB Classifier App")
|
89 |
+
|
90 |
+
# Load data
|
91 |
+
texts, prior_labels, X = get_data_and_embeddings()
|
92 |
+
st.markdown("### π§ Reference sentence for similarity")
|
93 |
+
reference = st.text_area("Type something like 'business related'")
|
94 |
+
prediction_choice = st.checkbox("try our iab model prediction for this")
|
95 |
+
|
96 |
+
|
97 |
+
def predict_content_multilabel(text, threshold=0.5, verbose=False):
|
98 |
+
model, tokenizer = get_model_and_tokenizer()
|
99 |
+
model.eval()
|
100 |
+
text = text.replace("-", " ")
|
101 |
+
with torch.no_grad():
|
102 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=256)
|
103 |
+
logits = model(**inputs).logits
|
104 |
+
probs = sigmoid(logits).squeeze().cpu().numpy()
|
105 |
+
|
106 |
+
predicted_labels = [(id2label[i], round(float(p), 3)) for i, p in enumerate(probs) if p >= threshold]
|
107 |
+
probs_res = [prob for prob in probs if prob >= threshold]
|
108 |
+
|
109 |
+
if verbose:
|
110 |
+
st.write(f"Text: {text}")
|
111 |
+
st.write("Predicted Labels:")
|
112 |
+
|
113 |
+
return predicted_labels
|
114 |
+
|
115 |
+
if reference:
|
116 |
+
st.write("Labels loaded:", len(prior_labels))
|
117 |
+
|
118 |
+
query = encode_reference(reference)
|
119 |
+
similarity = cosine_similarity([query], X)[0]
|
120 |
+
|
121 |
+
df_emb = pd.DataFrame({
|
122 |
+
"text": texts,
|
123 |
+
"sim": similarity,
|
124 |
+
"label": prior_labels,
|
125 |
+
}).sort_values("sim", ascending=False)
|
126 |
+
|
127 |
+
top_size = st.slider("number of similar items", 1, 100, 5)
|
128 |
+
top_candidates = [(row["text"], row["sim"], row["label"]) for row in df_emb.to_dict(orient="records")][:top_size]
|
129 |
+
|
130 |
+
st.markdown("### π§ͺ Similar example(s)")
|
131 |
+
if not top_candidates:
|
132 |
+
st.info("No more similar examples.")
|
133 |
+
else:
|
134 |
+
st.write(pd.DataFrame(top_candidates, columns=['text', 'similarity_score', 'label']))
|
135 |
+
top_labelled_df = pd.DataFrame(top_candidates, columns=['text', 'similarity_score', 'label'])
|
136 |
+
|
137 |
+
preds = dict(predict_content_multilabel(reference, threshold=0.2))
|
138 |
+
st.write(f"preds = {preds}")
|
139 |
+
|
140 |
+
col1, col2 = st.columns(2)
|
141 |
+
|
142 |
+
# Left: What training data says
|
143 |
+
with col1:
|
144 |
+
st.markdown("#### π What Training Data Says")
|
145 |
+
fig1, ax1 = plt.subplots()
|
146 |
+
top_labelled_df['label'].value_counts(normalize=True).sort_values().plot(kind='barh', ax=ax1, color="lightcoral")
|
147 |
+
ax1.set_title("Label Distribution")
|
148 |
+
ax1.set_xlabel("Proportion")
|
149 |
+
ax1.grid(True, axis='x', linestyle='--', alpha=0.5)
|
150 |
+
st.pyplot(fig1)
|
151 |
+
|
152 |
+
# Right: What model predicts
|
153 |
+
with col2:
|
154 |
+
st.markdown("#### π€ Model Predictions")
|
155 |
+
if len(preds) == 0 or not prediction_choice:
|
156 |
+
st.write("Model is unsure")
|
157 |
+
else:
|
158 |
+
fig2, ax2 = plt.subplots()
|
159 |
+
pd.Series(preds).sort_values().plot.barh(color="skyblue", ax=ax2)
|
160 |
+
ax2.set_title("Predicted Probabilities")
|
161 |
+
ax2.set_xlabel("Probability")
|
162 |
+
ax2.grid(True, axis='x', linestyle='--', alpha=0.5)
|
163 |
+
st.pyplot(fig2)
|
164 |
+
|
165 |
+
if prediction_choice and reference:
|
166 |
+
st.markdown("### π Model Explanation (Top Predicted Class)")
|
167 |
+
|
168 |
+
explainer = get_explainer()
|
169 |
+
attributions = explainer(reference)
|
170 |
+
|
171 |
+
st.markdown(f"**Predicted label:** `{explainer.predicted_class_name}`")
|
172 |
+
|
173 |
+
# Token importance bar chart
|
174 |
+
fig, ax = plt.subplots(figsize=(12, 1.5))
|
175 |
+
tokens, scores = zip(*attributions)
|
176 |
+
ax.bar(range(len(scores)), scores)
|
177 |
+
ax.set_xticks(range(len(tokens)))
|
178 |
+
ax.set_xticklabels(tokens, rotation=90)
|
179 |
+
ax.set_ylabel("Attribution Score")
|
180 |
+
ax.set_title("Token Attribution (Integrated Gradients)")
|
181 |
+
st.pyplot(fig)
|
182 |
+
|
183 |
+
# HTML Highlighted Text
|
184 |
+
st.markdown("#### π Highlighted Text Importance")
|
185 |
+
html_output = explainer.visualize().data
|
186 |
|
187 |
+
# Render in Streamlit
|
188 |
+
st.markdown(html_output, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|