|
from __future__ import annotations |
|
|
|
from aiohttp import ClientSession |
|
import random |
|
import string |
|
import json |
|
import re |
|
import aiohttp |
|
|
|
from ..typing import AsyncResult, Messages, ImageType |
|
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin |
|
from ..image import ImageResponse, to_data_uri |
|
|
|
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin): |
|
label = "Blackbox AI" |
|
url = "https://www.blackbox.ai" |
|
api_endpoint = "https://www.blackbox.ai/api/chat" |
|
working = True |
|
supports_stream = True |
|
supports_system_message = True |
|
supports_message_history = True |
|
_last_validated_value = None |
|
|
|
default_model = 'blackboxai' |
|
default_vision_model = default_model |
|
default_image_model = 'Image Generation' |
|
image_models = ['Image Generation', 'repomap'] |
|
vision_models = [default_model, 'gpt-4o', 'gemini-pro', 'gemini-1.5-flash', 'llama-3.1-8b', 'llama-3.1-70b', 'llama-3.1-405b'] |
|
|
|
userSelectedModel = ['gpt-4o', 'gemini-pro', 'claude-sonnet-3.5', 'blackboxai-pro'] |
|
|
|
agentMode = { |
|
'Image Generation': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"}, |
|
} |
|
|
|
trendingAgentMode = { |
|
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'}, |
|
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"}, |
|
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"}, |
|
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405"}, |
|
|
|
'Python Agent': {'mode': True, 'id': "Python Agent"}, |
|
'Java Agent': {'mode': True, 'id': "Java Agent"}, |
|
'JavaScript Agent': {'mode': True, 'id': "JavaScript Agent"}, |
|
'HTML Agent': {'mode': True, 'id': "HTML Agent"}, |
|
'Google Cloud Agent': {'mode': True, 'id': "Google Cloud Agent"}, |
|
'Android Developer': {'mode': True, 'id': "Android Developer"}, |
|
'Swift Developer': {'mode': True, 'id': "Swift Developer"}, |
|
'Next.js Agent': {'mode': True, 'id': "Next.js Agent"}, |
|
'MongoDB Agent': {'mode': True, 'id': "MongoDB Agent"}, |
|
'PyTorch Agent': {'mode': True, 'id': "PyTorch Agent"}, |
|
'React Agent': {'mode': True, 'id': "React Agent"}, |
|
'Xcode Agent': {'mode': True, 'id': "Xcode Agent"}, |
|
'AngularJS Agent': {'mode': True, 'id': "AngularJS Agent"}, |
|
|
|
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"}, |
|
|
|
'repomap': {'mode': True, 'id': "repomap"}, |
|
|
|
'Heroku Agent': {'mode': True, 'id': "Heroku Agent"}, |
|
'Godot Agent': {'mode': True, 'id': "Godot Agent"}, |
|
'Go Agent': {'mode': True, 'id': "Go Agent"}, |
|
'Gitlab Agent': {'mode': True, 'id': "Gitlab Agent"}, |
|
'Git Agent': {'mode': True, 'id': "Git Agent"}, |
|
'Flask Agent': {'mode': True, 'id': "Flask Agent"}, |
|
'Firebase Agent': {'mode': True, 'id': "Firebase Agent"}, |
|
'FastAPI Agent': {'mode': True, 'id': "FastAPI Agent"}, |
|
'Erlang Agent': {'mode': True, 'id': "Erlang Agent"}, |
|
'Electron Agent': {'mode': True, 'id': "Electron Agent"}, |
|
'Docker Agent': {'mode': True, 'id': "Docker Agent"}, |
|
'DigitalOcean Agent': {'mode': True, 'id': "DigitalOcean Agent"}, |
|
'Bitbucket Agent': {'mode': True, 'id': "Bitbucket Agent"}, |
|
'Azure Agent': {'mode': True, 'id': "Azure Agent"}, |
|
'Flutter Agent': {'mode': True, 'id': "Flutter Agent"}, |
|
'Youtube Agent': {'mode': True, 'id': "Youtube Agent"}, |
|
'builder Agent': {'mode': True, 'id': "builder Agent"}, |
|
} |
|
|
|
additional_prefixes = { |
|
'gpt-4o': '@gpt-4o', |
|
'gemini-pro': '@gemini-pro', |
|
'claude-sonnet-3.5': '@claude-sonnet' |
|
} |
|
|
|
model_prefixes = { |
|
**{ |
|
mode: f"@{value['id']}" for mode, value in trendingAgentMode.items() |
|
if mode not in ["gemini-1.5-flash", "llama-3.1-8b", "llama-3.1-70b", "llama-3.1-405b", "repomap"] |
|
}, |
|
**additional_prefixes |
|
} |
|
|
|
models = list(dict.fromkeys([default_model, *userSelectedModel, *list(agentMode.keys()), *list(trendingAgentMode.keys())])) |
|
|
|
model_aliases = { |
|
"gemini-flash": "gemini-1.5-flash", |
|
"claude-3.5-sonnet": "claude-sonnet-3.5", |
|
"flux": "Image Generation", |
|
} |
|
|
|
@classmethod |
|
async def fetch_validated(cls): |
|
if cls._last_validated_value: |
|
return cls._last_validated_value |
|
|
|
async with aiohttp.ClientSession() as session: |
|
try: |
|
async with session.get(cls.url) as response: |
|
if response.status != 200: |
|
print("Failed to load the page.") |
|
return cls._last_validated_value |
|
|
|
page_content = await response.text() |
|
js_files = re.findall(r'static/chunks/\d{4}-[a-fA-F0-9]+\.js', page_content) |
|
|
|
key_pattern = re.compile(r'w="([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12})"') |
|
|
|
for js_file in js_files: |
|
js_url = f"{cls.url}/_next/{js_file}" |
|
async with session.get(js_url) as js_response: |
|
if js_response.status == 200: |
|
js_content = await js_response.text() |
|
match = key_pattern.search(js_content) |
|
if match: |
|
validated_value = match.group(1) |
|
cls._last_validated_value = validated_value |
|
return validated_value |
|
except Exception as e: |
|
print(f"Error fetching validated value: {e}") |
|
|
|
return cls._last_validated_value |
|
|
|
@staticmethod |
|
def generate_id(length=7): |
|
characters = string.ascii_letters + string.digits |
|
return ''.join(random.choice(characters) for _ in range(length)) |
|
|
|
@classmethod |
|
def add_prefix_to_messages(cls, messages: Messages, model: str) -> Messages: |
|
prefix = cls.model_prefixes.get(model, "") |
|
if not prefix: |
|
return messages |
|
|
|
new_messages = [] |
|
for message in messages: |
|
new_message = message.copy() |
|
if message['role'] == 'user': |
|
new_message['content'] = (prefix + " " + message['content']).strip() |
|
new_messages.append(new_message) |
|
|
|
return new_messages |
|
|
|
@classmethod |
|
async def create_async_generator( |
|
cls, |
|
model: str, |
|
messages: Messages, |
|
prompt: str = None, |
|
proxy: str = None, |
|
web_search: bool = False, |
|
image: ImageType = None, |
|
image_name: str = None, |
|
**kwargs |
|
) -> AsyncResult: |
|
message_id = cls.generate_id() |
|
messages = cls.add_prefix_to_messages(messages, model) |
|
validated_value = await cls.fetch_validated() |
|
|
|
if image is not None: |
|
messages[-1]['data'] = { |
|
'fileText': '', |
|
'imageBase64': to_data_uri(image), |
|
'title': image_name |
|
} |
|
|
|
headers = { |
|
'accept': '*/*', |
|
'accept-language': 'en-US,en;q=0.9', |
|
'cache-control': 'no-cache', |
|
'content-type': 'application/json', |
|
'origin': cls.url, |
|
'pragma': 'no-cache', |
|
'priority': 'u=1, i', |
|
'referer': f'{cls.url}/', |
|
'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"', |
|
'sec-ch-ua-mobile': '?0', |
|
'sec-ch-ua-platform': '"Linux"', |
|
'sec-fetch-dest': 'empty', |
|
'sec-fetch-mode': 'cors', |
|
'sec-fetch-site': 'same-origin', |
|
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36' |
|
} |
|
|
|
data = { |
|
"messages": messages, |
|
"id": message_id, |
|
"previewToken": None, |
|
"userId": None, |
|
"codeModelMode": True, |
|
"agentMode": cls.agentMode.get(model, {}) if model in cls.agentMode else {}, |
|
"trendingAgentMode": cls.trendingAgentMode.get(model, {}) if model in cls.trendingAgentMode else {}, |
|
"isMicMode": False, |
|
"userSystemPrompt": None, |
|
"maxTokens": 1024, |
|
"playgroundTopP": 0.9, |
|
"playgroundTemperature": 0.5, |
|
"isChromeExt": False, |
|
"githubToken": None, |
|
"clickedAnswer2": False, |
|
"clickedAnswer3": False, |
|
"clickedForceWebSearch": False, |
|
"visitFromDelta": False, |
|
"mobileClient": False, |
|
"userSelectedModel": model if model in cls.userSelectedModel else None, |
|
"webSearchMode": web_search, |
|
"validated": validated_value, |
|
} |
|
|
|
async with ClientSession(headers=headers) as session: |
|
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response: |
|
response.raise_for_status() |
|
response_text = await response.text() |
|
|
|
if model in cls.image_models: |
|
image_matches = re.findall(r'!\[.*?\]\((https?://[^\)]+)\)', response_text) |
|
if image_matches: |
|
image_url = image_matches[0] |
|
yield ImageResponse(image_url, prompt) |
|
return |
|
|
|
response_text = re.sub(r'Generated by BLACKBOX.AI, try unlimited chat https://www.blackbox.ai', '', response_text, flags=re.DOTALL) |
|
|
|
json_match = re.search(r'\$~~~\$(.*?)\$~~~\$', response_text, re.DOTALL) |
|
if json_match: |
|
search_results = json.loads(json_match.group(1)) |
|
answer = response_text.split('$~~~$')[-1].strip() |
|
|
|
formatted_response = f"{answer}\n\n**Source:**" |
|
for i, result in enumerate(search_results, 1): |
|
formatted_response += f"\n{i}. {result['title']}: {result['link']}" |
|
|
|
yield formatted_response |
|
else: |
|
yield response_text.strip() |
|
|