File size: 10,109 Bytes
79859e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from __future__ import annotations
from aiohttp import ClientSession
import random
import string
import json
import re
import aiohttp
from ..typing import AsyncResult, Messages, ImageType
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse, to_data_uri
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
label = "Blackbox AI"
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
_last_validated_value = None
default_model = 'blackboxai'
default_vision_model = default_model
default_image_model = 'Image Generation'
image_models = ['Image Generation', 'repomap']
vision_models = [default_model, 'gpt-4o', 'gemini-pro', 'gemini-1.5-flash', 'llama-3.1-8b', 'llama-3.1-70b', 'llama-3.1-405b']
userSelectedModel = ['gpt-4o', 'gemini-pro', 'claude-sonnet-3.5', 'blackboxai-pro']
agentMode = {
'Image Generation': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
}
trendingAgentMode = {
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405"},
#
'Python Agent': {'mode': True, 'id': "Python Agent"},
'Java Agent': {'mode': True, 'id': "Java Agent"},
'JavaScript Agent': {'mode': True, 'id': "JavaScript Agent"},
'HTML Agent': {'mode': True, 'id': "HTML Agent"},
'Google Cloud Agent': {'mode': True, 'id': "Google Cloud Agent"},
'Android Developer': {'mode': True, 'id': "Android Developer"},
'Swift Developer': {'mode': True, 'id': "Swift Developer"},
'Next.js Agent': {'mode': True, 'id': "Next.js Agent"},
'MongoDB Agent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorch Agent': {'mode': True, 'id': "PyTorch Agent"},
'React Agent': {'mode': True, 'id': "React Agent"},
'Xcode Agent': {'mode': True, 'id': "Xcode Agent"},
'AngularJS Agent': {'mode': True, 'id': "AngularJS Agent"},
#
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
#
'repomap': {'mode': True, 'id': "repomap"},
#
'Heroku Agent': {'mode': True, 'id': "Heroku Agent"},
'Godot Agent': {'mode': True, 'id': "Godot Agent"},
'Go Agent': {'mode': True, 'id': "Go Agent"},
'Gitlab Agent': {'mode': True, 'id': "Gitlab Agent"},
'Git Agent': {'mode': True, 'id': "Git Agent"},
'Flask Agent': {'mode': True, 'id': "Flask Agent"},
'Firebase Agent': {'mode': True, 'id': "Firebase Agent"},
'FastAPI Agent': {'mode': True, 'id': "FastAPI Agent"},
'Erlang Agent': {'mode': True, 'id': "Erlang Agent"},
'Electron Agent': {'mode': True, 'id': "Electron Agent"},
'Docker Agent': {'mode': True, 'id': "Docker Agent"},
'DigitalOcean Agent': {'mode': True, 'id': "DigitalOcean Agent"},
'Bitbucket Agent': {'mode': True, 'id': "Bitbucket Agent"},
'Azure Agent': {'mode': True, 'id': "Azure Agent"},
'Flutter Agent': {'mode': True, 'id': "Flutter Agent"},
'Youtube Agent': {'mode': True, 'id': "Youtube Agent"},
'builder Agent': {'mode': True, 'id': "builder Agent"},
}
additional_prefixes = {
'gpt-4o': '@gpt-4o',
'gemini-pro': '@gemini-pro',
'claude-sonnet-3.5': '@claude-sonnet'
}
model_prefixes = {
**{
mode: f"@{value['id']}" for mode, value in trendingAgentMode.items()
if mode not in ["gemini-1.5-flash", "llama-3.1-8b", "llama-3.1-70b", "llama-3.1-405b", "repomap"]
},
**additional_prefixes
}
models = list(dict.fromkeys([default_model, *userSelectedModel, *list(agentMode.keys()), *list(trendingAgentMode.keys())]))
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"flux": "Image Generation",
}
@classmethod
async def fetch_validated(cls):
if cls._last_validated_value:
return cls._last_validated_value
async with aiohttp.ClientSession() as session:
try:
async with session.get(cls.url) as response:
if response.status != 200:
print("Failed to load the page.")
return cls._last_validated_value
page_content = await response.text()
js_files = re.findall(r'static/chunks/\d{4}-[a-fA-F0-9]+\.js', page_content)
key_pattern = re.compile(r'w="([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12})"')
for js_file in js_files:
js_url = f"{cls.url}/_next/{js_file}"
async with session.get(js_url) as js_response:
if js_response.status == 200:
js_content = await js_response.text()
match = key_pattern.search(js_content)
if match:
validated_value = match.group(1)
cls._last_validated_value = validated_value
return validated_value
except Exception as e:
print(f"Error fetching validated value: {e}")
return cls._last_validated_value
@staticmethod
def generate_id(length=7):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@classmethod
def add_prefix_to_messages(cls, messages: Messages, model: str) -> Messages:
prefix = cls.model_prefixes.get(model, "")
if not prefix:
return messages
new_messages = []
for message in messages:
new_message = message.copy()
if message['role'] == 'user':
new_message['content'] = (prefix + " " + message['content']).strip()
new_messages.append(new_message)
return new_messages
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
prompt: str = None,
proxy: str = None,
web_search: bool = False,
image: ImageType = None,
image_name: str = None,
**kwargs
) -> AsyncResult:
message_id = cls.generate_id()
messages = cls.add_prefix_to_messages(messages, model)
validated_value = await cls.fetch_validated()
if image is not None:
messages[-1]['data'] = {
'fileText': '',
'imageBase64': to_data_uri(image),
'title': image_name
}
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'no-cache',
'content-type': 'application/json',
'origin': cls.url,
'pragma': 'no-cache',
'priority': 'u=1, i',
'referer': f'{cls.url}/',
'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36'
}
data = {
"messages": messages,
"id": message_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": cls.agentMode.get(model, {}) if model in cls.agentMode else {},
"trendingAgentMode": cls.trendingAgentMode.get(model, {}) if model in cls.trendingAgentMode else {},
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": 1024,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"userSelectedModel": model if model in cls.userSelectedModel else None,
"webSearchMode": web_search,
"validated": validated_value,
}
async with ClientSession(headers=headers) as session:
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
response_text = await response.text()
if model in cls.image_models:
image_matches = re.findall(r'!\[.*?\]\((https?://[^\)]+)\)', response_text)
if image_matches:
image_url = image_matches[0]
yield ImageResponse(image_url, prompt)
return
response_text = re.sub(r'Generated by BLACKBOX.AI, try unlimited chat https://www.blackbox.ai', '', response_text, flags=re.DOTALL)
json_match = re.search(r'\$~~~\$(.*?)\$~~~\$', response_text, re.DOTALL)
if json_match:
search_results = json.loads(json_match.group(1))
answer = response_text.split('$~~~$')[-1].strip()
formatted_response = f"{answer}\n\n**Source:**"
for i, result in enumerate(search_results, 1):
formatted_response += f"\n{i}. {result['title']}: {result['link']}"
yield formatted_response
else:
yield response_text.strip()
|