Spaces:
Running
Running
File size: 8,590 Bytes
f9355e9 a3ea5d3 f9355e9 a3ea5d3 f9355e9 a3ea5d3 f9355e9 a3ea5d3 f9355e9 a3ea5d3 f9355e9 a3ea5d3 f9355e9 a3ea5d3 f9355e9 a3ea5d3 f9355e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
from pathlib import Path
import torch
from st_on_hover_tabs import on_hover_tabs
import streamlit as st
st.set_page_config(layout="wide")
import sys, os
import rdkit
import rdkit.Chem as Chem
from rdkit.Chem.Draw import MolToImage
from rdkit.Chem import Descriptors
import sascorer
import networkx as nx
from stqdm import stqdm
import base64, io
os.environ['KMP_DUPLICATE_LIB_OK']='True'
sys.path.append('%s/fast_jtnn/' % os.path.dirname(os.path.realpath(__file__)))
from mol_tree import Vocab, MolTree
from jtprop_vae import JTPropVAE
from molbloom import buy
css='''
[data-testid="metric-container"] {
width: fit-content;
margin: auto;
}
[data-testid="metric-container"] > div {
width: fit-content;
margin: auto;
}
[data-testid="metric-container"] label {
width: fit-content;
margin: auto;
}
'''
st.markdown(f'<style>{css}</style>',unsafe_allow_html=True)
def img_to_bytes(img_path):
img_bytes = Path(img_path).read_bytes()
encoded = base64.b64encode(img_bytes).decode()
return encoded
def img_to_html(img_path):
img_html = "<img src='data:image/png;base64,{}' class='img-fluid' style='max-width: 500px;'>".format(
img_to_bytes(img_path)
)
return img_html
def penalized_logp_standard(mol):
logP_mean = 2.4399606244103639873799239
logP_std = 0.9293197802518905481505840
SA_mean = -2.4485512208785431553792478
SA_std = 0.4603110476923852334429910
cycle_mean = -0.0307270378623088931402396
cycle_std = 0.2163675785228087178335699
log_p = Descriptors.MolLogP(mol)
SA = -sascorer.calculateScore(mol)
# cycle score
cycle_list = nx.cycle_basis(nx.Graph(Chem.rdmolops.GetAdjacencyMatrix(mol)))
if len(cycle_list) == 0:
cycle_length = 0
else:
cycle_length = max([len(j) for j in cycle_list])
if cycle_length <= 6:
cycle_length = 0
else:
cycle_length = cycle_length - 6
cycle_score = -cycle_length
# print(logP_mean)
standardized_log_p = (log_p - logP_mean) / logP_std
standardized_SA = (SA - SA_mean) / SA_std
standardized_cycle = (cycle_score - cycle_mean) / cycle_std
return standardized_log_p + standardized_SA + standardized_cycle
lg = rdkit.RDLogger.logger()
lg.setLevel(rdkit.RDLogger.CRITICAL)
st.markdown("<h1 style='text-align: center;'>Junction Tree Variational Autoencoder for Molecular Graph Generation (JTVAE)</h1>",unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center;'>Wengong Jin, Regina Barzilay, Tommi Jaakkola</h3>",unsafe_allow_html=True)
st.markdown('<style>' + open('./style.css').read() + '</style>', unsafe_allow_html=True)
with st.sidebar:
# st.header('+')
st.markdown("<h5 style='text-align: center; color:grey;'>Explore</h5>",unsafe_allow_html=True)
tabs = on_hover_tabs(tabName=['Optimize a molecule', 'Optimize batch', 'About'],
iconName=['science', 'batch_prediction', 'info'], default_choice=0)
if tabs == 'About':
descrip = '''
We seek to automate the design of molecules based on specific chemical properties. In computational terms, this task involves continuous embedding and generation of molecular graphs. Our primary contribution is the direct realization of molecular graphs, a task previously approached by generating linear SMILES strings instead of graphs. Our junction tree variational autoencoder generates molecular graphs in two phases, by first generating a tree-structured scaffold over chemical substructures, and then combining them into a molecule with a graph message passing network. This approach allows us to incrementally expand molecules while maintaining chemical validity at every step. We evaluate our model on multiple tasks ranging from molecular generation to optimization. Across these tasks, our model outperforms previous state-of-the-art baselines by a significant margin.
[https://arxiv.org/abs/1802.04364](https://arxiv.org/abs/1802.04364)'''
st.markdown(descrip)
st.markdown("<p style='text-align: center;'>"+
img_to_html('about.png')+
"</p>", unsafe_allow_html=True)
elif tabs == 'Optimize a molecule':
st.markdown("<h2 style='text-align: center;'>Optimize a molecule</h2>",unsafe_allow_html=True)
st.text_input('Enter a SMILES string:','CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F',key='smiles')
mol = Chem.MolFromSmiles(st.session_state.smiles)
if mol is None:
st.markdown("<p style='text-align: center; color: red;'>SMILES is invalid. Please enter a valid SMILES.</p>",unsafe_allow_html=True)
else:
score = penalized_logp_standard(mol)
# with st.columns(3)[1]:
# st.markdown("<style>{text-align: center;}</style>",unsafe_allow_html=True)
imgByteArr = io.BytesIO()
MolToImage(mol,size=(400,400)).save(imgByteArr,format='PNG')
st.markdown("<p style='text-align: center;'>"+
f"<img src='data:image/png;base64,{base64.b64encode(imgByteArr.getvalue()).decode()}' class='img-fluid'>"+
"</p>", unsafe_allow_html=True)
# st.image(MolToImage(mol,size=(300,300)))
st.metric('Penalized logP score', '%.5f' % (score))
if mol is not None:
# col1, col2, col3 = st.columns(3)
st.slider('Choose learning rate: ',0.0,10.0,0.4,key='lr')
st.slider('Choose similarity cutoff: ',0.0,3.0,0.4,key='sim_cutoff')
st.slider('Choose number of iterations: ',1,100,80,key='n_iter')
vocab = [x.strip("\r\n ") for x in open('./vocab.txt')]
vocab = Vocab(vocab)
if st.button('Optimize'):
# st.write('Testing')
# with st.columns(3)[1]:
with st.spinner("Operation in progress. Please wait."):
model = JTPropVAE(vocab, 450, 56, 20, 3)
model.load_state_dict(torch.load('./model.iter-685000',map_location=torch.device('cpu')))
new_smiles,sim = model.optimize(st.session_state.smiles, sim_cutoff=st.session_state.sim_cutoff, lr=st.session_state.lr, num_iter=st.session_state.n_iter)
del model
if new_smiles is None:
st.markdown("<p style='text-align: center; color: red;'>Cannot optimize! Please choose another setting.</p>",unsafe_allow_html=True)
else:
st.markdown("<b style='text-align: center;'>New SMILES</b>",unsafe_allow_html=True)
st.code(new_smiles)
new_mol = Chem.MolFromSmiles(new_smiles)
if new_mol is None:
st.markdown("<p style='text-align: center; color: red;'>New SMILES is invalid! Please choose another setting.</p>",unsafe_allow_html=True)
# st.write('New SMILES is invalid.')
else:
# st.write('New SMILES molecule:')
imgByteArr = io.BytesIO()
MolToImage(new_mol,size=(400,400)).save(imgByteArr,format='PNG')
st.markdown("<p style='text-align: center;'>"+
f"<img src='data:image/png;base64,{base64.b64encode(imgByteArr.getvalue()).decode()}' class='img-fluid'>"+
"</p>", unsafe_allow_html=True)
new_score = penalized_logp_standard(new_mol)
# st.write('New penalized logP score: %.5f' % (new_score))
st.metric('New penalized logP score','%.5f' % (new_score), '%.5f'%(new_score-score))
st.metric('Similarity','%.5f' % (sim))
# st.write('Caching ZINC20 if necessary...')
with st.spinner("Caching ZINC20 if necessary..."):
if buy(new_smiles, catalog='zinc20',canonicalize=True):
st.write('This molecule exists.')
st.markdown("<h3 style='text-align: center; color: cyan;'><b>This molecule exists.</h3>",unsafe_allow_html=True)
else:
# st.write('THIS MOLECULE DOES NOT EXIST!')
st.markdown("<h3 style='text-align: center; color: lightgreen;'>THIS MOLECULE DOES NOT EXIST!</h3>",unsafe_allow_html=True)
st.markdown("<p style='text-align: center; color: grey;'>Checked using molbloom</p>",unsafe_allow_html=True)
elif tabs == 'Optimize batch':
st.write('Incoming...')
|