Spaces:
Sleeping
Sleeping
File size: 23,036 Bytes
f9355e9 a3ea5d3 975be11 a3ea5d3 f9355e9 975be11 a3ea5d3 f9355e9 975be11 a3ea5d3 f9355e9 975be11 f9355e9 975be11 f9355e9 a3ea5d3 975be11 a3ea5d3 975be11 a3ea5d3 f9355e9 975be11 f9355e9 975be11 f9355e9 975be11 f9355e9 975be11 f9355e9 975be11 a3ea5d3 975be11 f9355e9 975be11 a3ea5d3 f9355e9 975be11 f9355e9 975be11 f9355e9 975be11 f9355e9 975be11 f9355e9 975be11 f9355e9 975be11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
from pathlib import Path
import torch
# from st_on_hover_tabs import on_hover_tabs
import streamlit as st
st.set_page_config(layout="wide")
model_path = './model.iter-685000'
import sys, os
import rdkit
import rdkit.Chem as Chem
from rdkit.Chem.Draw import MolToImage
from rdkit.Chem import Descriptors
import sascorer
import networkx as nx
from stqdm import stqdm
import base64, io
import pandas as pd
import streamlit_ext as ste
os.environ['KMP_DUPLICATE_LIB_OK']='True'
sys.path.append('%s/fast_jtnn/' % os.path.dirname(os.path.realpath(__file__)))
from mol_tree import Vocab, MolTree
from jtprop_vae import JTPropVAE
from molbloom import buy
css='''
[data-testid="metric-container"] {
width: fit-content;
margin: auto;
}
[data-testid="metric-container"] > div {
width: fit-content;
margin: auto;
}
[data-testid="metric-container"] label {
width: fit-content;
margin: auto;
[data-testid="stDataFrameResizable"] {
width: fit-content;
margin: auto;
}
}
'''
st.markdown(f'<style>{css}</style>',unsafe_allow_html=True)
s_buff = io.StringIO()
def img_to_bytes(img_path):
img_bytes = Path(img_path).read_bytes()
encoded = base64.b64encode(img_bytes).decode()
return encoded
def img_to_html(img_path):
img_html = "<img src='data:image/png;base64,{}' class='img-fluid' style='max-width: 500px;'>".format(
img_to_bytes(img_path)
)
return img_html
_mcf = pd.read_csv('./mcf.csv')
_pains = pd.read_csv('./wehi_pains.csv',
names=['smarts', 'names'])
_mcf_filters = [Chem.MolFromSmarts(x) for x in
_mcf['smarts'].values]
_pains_filters = [Chem.MolFromSmarts(x) for x in
_pains['smarts'].values]
def mol_passes_filters_custom(mol,
allowed=None,
isomericSmiles=False):
"""
Checks if mol
* passes MCF and PAINS filters,
* has only allowed atoms
* is not charged
"""
allowed = allowed or {'C', 'N', 'S', 'O', 'F', 'Cl', 'Br', 'H'}
if mol is None:
return 'NoMol'
ring_info = mol.GetRingInfo()
if ring_info.NumRings() != 0 and any(
len(x) >= 8 for x in ring_info.AtomRings()
):
return 'ManyRings'
h_mol = Chem.AddHs(mol)
if any(atom.GetFormalCharge() != 0 for atom in mol.GetAtoms()):
return 'Charged'
if any(atom.GetSymbol() not in allowed for atom in mol.GetAtoms()):
return 'AtomNotAllowed'
if any(h_mol.HasSubstructMatch(smarts) for smarts in _mcf_filters):
return 'MCF'
if any(h_mol.HasSubstructMatch(smarts) for smarts in _pains_filters):
return 'PAINS'
smiles = Chem.MolToSmiles(mol, isomericSmiles=isomericSmiles)
if smiles is None or len(smiles) == 0:
return 'Isomeric'
if Chem.MolFromSmiles(smiles) is None:
return 'Isomeric'
return 'YES'
def penalized_logp_standard(mol):
logP_mean = 2.4399606244103639873799239
logP_std = 0.9293197802518905481505840
SA_mean = -2.4485512208785431553792478
SA_std = 0.4603110476923852334429910
cycle_mean = -0.0307270378623088931402396
cycle_std = 0.2163675785228087178335699
log_p = Descriptors.MolLogP(mol)
SA = -sascorer.calculateScore(mol)
# cycle score
cycle_list = nx.cycle_basis(nx.Graph(Chem.rdmolops.GetAdjacencyMatrix(mol)))
if len(cycle_list) == 0:
cycle_length = 0
else:
cycle_length = max([len(j) for j in cycle_list])
if cycle_length <= 6:
cycle_length = 0
else:
cycle_length = cycle_length - 6
cycle_score = -cycle_length
# print(logP_mean)
standardized_log_p = (log_p - logP_mean) / logP_std
standardized_SA = (SA - SA_mean) / SA_std
standardized_cycle = (cycle_score - cycle_mean) / cycle_std
return log_p,SA,cycle_score,standardized_log_p + standardized_SA + standardized_cycle
def df_to_file(df):
s_buff.seek(0)
df.to_csv(s_buff)
return s_buff.getvalue().encode()
def download_df(df,id):
with st.expander(':arrow_down: Download this dataframe'):
st.markdown("<h4 style='color:tomato;'>Select column(s) to save:</h4>",unsafe_allow_html=True)
for col in df.columns:
st.checkbox(col,key=str(id)+'_col_'+str(col))
st.text_input('File name (.csv):','dataframe',key=str(id)+'_file_name')
ste.download_button('Download',df_to_file(df[[col for col in df.columns if st.session_state[str(id)+'_col_'+str(col)]]]),st.session_state[str(id)+'_file_name']+'.csv')
lg = rdkit.RDLogger.logger()
lg.setLevel(rdkit.RDLogger.CRITICAL)
if 'current_view' not in st.session_state:
st.session_state['current_view'] = 0
if 'current_step' not in st.session_state:
st.session_state['current_step'] = 0
def set_page_view(id):
st.session_state['current_view'] = id
def get_page_view():
return st.session_state['current_view']
def set_step(id):
st.session_state['current_step'] = id
def get_step():
return st.session_state['current_step']
@st.cache_resource
def load_model():
vocab = [x.strip("\r\n ") for x in open('./vocab.txt')]
vocab = Vocab(vocab)
model = JTPropVAE(vocab, 450, 56, 20, 3)
model.load_state_dict(torch.load(model_path,map_location=torch.device('cpu')))
return model
from streamlit_lottie import st_lottie
import requests
def render_animation():
animation_response = requests.get('https://assets1.lottiefiles.com/packages/lf20_vykpwt8b.json')
animation_json = dict()
if animation_response.status_code == 200:
animation_json = animation_response.json()
else:
print("Error in the URL")
return st_lottie(animation_json,height=200,width=300)
def oam_sidebar(step):
st.title('**Optimize a molecule**')
prog_bar = st.progress(0)
# cur_step = get_step()
if step == 0: prog_bar.progress(0)
if step == 1: prog_bar.progress(33)
if step == 2: prog_bar.progress(67)
if step == 3: prog_bar.progress(100)
st.markdown('\n')
# st.markdown(get_step())
color_ls = colorize_step(4,step)
st.markdown("<h4 style='color: "+color_ls[0]+"'>Choose a molecule</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[1]+"'>Choose settings</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[2]+"'>Optimizing a molecule</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[3]+"'>Finished</h4>",unsafe_allow_html=True)
# @st.cache_data(experimental_allow_widgets=True)
# if 'sidebar_con' not in st.session_state:
# sidebar_con = st.empty()
# def render_sidebar(page,step):
# sidebar_con.empty()
# with sidebar_con.container():
# if page == 0:
# with st.sidebar():
# oam_sidebar(step)
def colorize_step(n_step,cur_step):
color_list = ['grey']*n_step
for i in range(cur_step):
color_list[i] = 'mediumseagreen'
color_list[cur_step] = 'tomato'
if cur_step == n_step-1:
color_list[cur_step] = 'mediumseagreen'
return color_list
def form_header():
st.markdown("<h1 style='text-align: center;'>Junction Tree Variational Autoencoder for Molecular Graph Generation (JTVAE)</h1>",unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center;'>Wengong Jin, Regina Barzilay, Tommi Jaakkola</h3>",unsafe_allow_html=True)
# determines button color which should be red when user is on that given step
oam_type = 'primary' if st.session_state['current_view'] == 0 else 'secondary'
oab_type = 'primary' if st.session_state['current_view'] == 1 else 'secondary'
ab_type = 'primary' if st.session_state['current_view'] == 2 else 'secondary'
step_cols = st.columns([.85,.5,.5,.5,.85])
step_cols[1].button('Optimize a molecule',on_click=set_page_view,args=[0],type=oam_type,use_container_width=True)
step_cols[2].button('Optimize a batch',on_click=set_page_view,args=[1],type=oab_type,use_container_width=True)
step_cols[3].button('About',on_click=set_page_view,args=[2],type=ab_type,use_container_width=True)
st.empty()
def form_body():
body_container = st.empty()
###### Optimize a molecule ######
if st.session_state['current_view'] == 0:
body_container.empty()
with body_container.container():
Optimize_a_molecule()
###### Optimize a batch ######
if st.session_state['current_view'] == 1:
body_container.empty()
with body_container.container():
Optimize_a_batch()
###### About ######
if st.session_state['current_view'] == 2:
body_container.empty()
with body_container.container():
About()
def About():
descrip = '''
We seek to automate the design of molecules based on specific chemical properties. In computational terms, this task involves continuous embedding and generation of molecular graphs. Our primary contribution is the direct realization of molecular graphs, a task previously approached by generating linear SMILES strings instead of graphs. Our junction tree variational autoencoder generates molecular graphs in two phases, by first generating a tree-structured scaffold over chemical substructures, and then combining them into a molecule with a graph message passing network. This approach allows us to incrementally expand molecules while maintaining chemical validity at every step. We evaluate our model on multiple tasks ranging from molecular generation to optimization. Across these tasks, our model outperforms previous state-of-the-art baselines by a significant margin.
[https://arxiv.org/abs/1802.04364](https://arxiv.org/abs/1802.04364)'''
st.markdown(descrip)
st.markdown("<p style='text-align: center;'>"+
img_to_html('about.png')+
"</p>", unsafe_allow_html=True)
def Optimize_a_molecule():
st.markdown("<h2 style='text-align: center;'>Optimize a molecule</h2>",unsafe_allow_html=True)
with st.expander(':snowman: :blue[Instruction]'):
guide = """<h4 style='color:tomato;'>Steps to optimize a molucule</h4>
1. Select from examples, or manually enter a valid SMILES string of a molecule.</br>
2. Configure the settings to generate a new molecule. The new molecule should have a higher penalized LogP value.</br>
- Learning rate: How 'far' from the molecule that you want to search.</br>
- Similarity cutoff: How 'similar' to the molecule that you want to search.</br>
- Number of iterations: Number of generation trials.</br>
<h4 style='color:darkturquoise;'>Annotation</h4>
<b>SMILES</b> - Simplified molecular-input line-entry system</br>
<b>LogP</b> - The log of the partition coefficient of a solute between octanol and water, at near infinite dilution</br>
<b>SA score</b> - Synthetic Accessibility Score (lower is better)</br>
<b>Cycle score</b> - A number of carbon rings of size larger than 6 (lower is better)</br>
<b>Penalized LogP</b> - Standardized score of <i>LogP - SA score - Cycle score</i></br>
<b>Similarity</b> - Molecular similarity is calculated via Morgan fingerprint of radius 2 with Tanimoto similarity</br>
"""
st.markdown(guide,unsafe_allow_html=True)
with st.sidebar:
sidebar_con = st.empty()
# sidebar_con.empty()
with sidebar_con.container():
set_step(0)
oam_sidebar(0)
oab_sel_container = st.empty()
if 'checked_single' not in st.session_state:
st.session_state.checked_single = 'NO'
with oab_sel_container.container():
oam_sel_col = st.columns([3,7])
oam_sel_col[0].selectbox("Select an example",options=['-','Sorafenib','Pazopanib','Sunitinib'],key='mode',on_change=reset_oam_state)
if st.session_state.mode == '-':
st.session_state.smiles = oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):',max_chars=200)
elif st.session_state.mode == 'Sorafenib':
st.session_state.smiles = 'CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F'
oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):','CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F',max_chars=200,disabled=True)
elif st.session_state.mode == 'Pazopanib':
st.session_state.smiles = 'CC1=C(C=C(C=C1)NC2=NC=CC(=N2)N(C)C3=CC4=NN(C(=C4C=C3)C)C)S(=O)(=O)N'
oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):','CC1=C(C=C(C=C1)NC2=NC=CC(=N2)N(C)C3=CC4=NN(C(=C4C=C3)C)C)S(=O)(=O)N',max_chars=200,disabled=True)
elif st.session_state.mode == 'Sunitinib':
st.session_state.smiles = 'CCN(CC)CCNC(=O)C1=C(NC(=C1C)C=C2C3=C(C=CC(=C3)F)NC2=O)C'
oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):','CCN(CC)CCNC(=O)C1=C(NC(=C1C)C=C2C3=C(C=CC(=C3)F)NC2=O)C',max_chars=200,disabled=True)
st.columns([4,1,4])[1].button('Check SMILES',on_click=check_single,args=[st.session_state.smiles])
check_single_con = st.empty()
if 'smiles_selected' in st.session_state:
if st.session_state.smiles_selected:
with check_single_con.container():
if 'checked_single' in st.session_state:
if st.session_state.checked_single == 'EnterError':
st.markdown("<p style='text-align: center; color: red;'><b>Please enter a SMILES string.</b></p>",unsafe_allow_html=True)
sidebar_con.empty()
with sidebar_con.container():
set_step(0)
oam_sidebar(0)
elif st.session_state.checked_single == 'MolError':
st.markdown("<p style='text-align: center; color: red;'><b>SMILES is invalid. Please enter a valid SMILES.</b></p>",unsafe_allow_html=True)
sidebar_con.empty()
with sidebar_con.container():
set_step(0)
oam_sidebar(0)
elif st.session_state.checked_single == 'YES':
st.markdown("<b>Canonicalized SMILES</b>",unsafe_allow_html=True)
st.code(st.session_state.smiles)
st.markdown("<p style='text-align: center; color: mediumseagreen'>MOSES filters passed successfully.</p>",unsafe_allow_html=True)
mol = Chem.MolFromSmiles(st.session_state.smiles)
imgByteArr = io.BytesIO()
MolToImage(mol,size=(400,400)).save(imgByteArr,format='PNG')
st.markdown("<p style='text-align: center;'>"+
f"<img src='data:image/png;base64,{base64.b64encode(imgByteArr.getvalue()).decode()}' class='img-fluid'>"+
"</p>", unsafe_allow_html=True)
# st.image(MolToImage(mol,size=(300,300)))
col1, col2, col3, col4 = st.columns(4)
col1.metric('LogP', '%.5f' % (st.session_state.logp))
col2.metric('SA score', '%.5f' % (-st.session_state.sa))
col3.metric('Cycle score', '%d' % (-st.session_state.cycle))
col4.metric('Penalized LogP', '%.5f' % (st.session_state.pen_p))
st.session_state.smiles_checked = True
# render_sidebar()
# col1, col2, col3 = st.columns(3)
sidebar_con.empty()
with sidebar_con.container():
set_step(1)
oam_sidebar(1)
with st.form(":gear: Settings"):
st.slider('Choose learning rate: ',0.0,5.0,0.4,key='lr_s')
st.slider('Choose similarity cutoff: ',0.0,1.0,0.4,key='sim_cutoff_s')
st.slider('Choose number of iterations: ',1,100,80,key='n_iter_s')
st.session_state.optim_single_butt = st.form_submit_button("Optimize")
else:
st.markdown("<b>Canonicalized SMILES</b>",unsafe_allow_html=True)
st.code(st.session_state.smiles)
st.markdown("<p style='text-align: center; color: red;'><b>MOSES filters passed failed. Please use another molecule.</b></p>",unsafe_allow_html=True)
sidebar_con.empty()
with sidebar_con.container():
set_step(0)
oam_sidebar(0)
else: check_single_con.empty()
optim_single_con = st.empty()
if 'optim_single_butt' in st.session_state:
if st.session_state.optim_single_butt and st.session_state.smiles_checked:
sidebar_con.empty()
with sidebar_con.container():
set_step(2)
oam_sidebar(2)
with optim_single_con.container():
ani_con = st.empty()
with ani_con.container():
st.markdown('Operation in progress. Please wait...')
render_animation()
new_smiles,sim = optim_single(st.session_state.smiles,st.session_state.lr_s,st.session_state.sim_cutoff_s,st.session_state.n_iter_s)
ani_con.empty()
sidebar_con.empty()
with sidebar_con.container():
set_step(3)
oam_sidebar(3)
if new_smiles is None:
st.markdown("<h4 style='text-align: center; color: red;'>Cannot optimize! Please choose another setting.</h4>",unsafe_allow_html=True)
else:
st.markdown("<b style='text-align: center;'>New SMILES</b>",unsafe_allow_html=True)
st.code(new_smiles)
new_mol = Chem.MolFromSmiles(new_smiles)
if new_mol is None:
st.markdown("<p style='text-align: center; color: red;'>New SMILES is invalid! Please choose another setting.</p>",unsafe_allow_html=True)
# st.write('New SMILES is invalid.')
else:
# st.write('New SMILES molecule:')
imgByteArr = io.BytesIO()
MolToImage(new_mol,size=(400,400)).save(imgByteArr,format='PNG')
st.markdown("<p style='text-align: center;'>"+
f"<img src='data:image/png;base64,{base64.b64encode(imgByteArr.getvalue()).decode()}' class='img-fluid'>"+
"</p>", unsafe_allow_html=True)
new_moses_passed = mol_passes_filters_custom(new_mol)
if new_moses_passed=='YES':
st.markdown("<p style='text-align: center; color: mediumseagreen'>MOSES filters passed successfully.</p>",unsafe_allow_html=True)
else:
st.markdown("<p style='text-align: center; color: red;'><b>MOSES filters passed failed.</b></p>",unsafe_allow_html=True)
st.session_state.new_logp,st.session_state.new_sa,st.session_state.new_cycle,st.session_state.new_pen_p = penalized_logp_standard(new_mol)
# st.write('New penalized logP score: %.5f' % (new_score))
col12, col22, col32, col42 = st.columns(4)
col12.metric('LogP', '%.5f' % (st.session_state.new_logp),'%.5f'%(st.session_state.new_logp-st.session_state.logp))
col22.metric('SA score', '%.5f' % (-st.session_state.new_sa),'%.5f'%(-st.session_state.new_sa+st.session_state.sa),delta_color='inverse')
col32.metric('Cycle score', '%d' % (-st.session_state.new_cycle),'%d'%(-st.session_state.new_cycle+st.session_state.cycle),delta_color='inverse')
col42.metric('Penalized LogP', '%.5f' % (st.session_state.new_pen_p),'%.5f'%(st.session_state.new_pen_p-st.session_state.pen_p))
# st.metric('New penalized logP score','%.5f' % (new_score), '%.5f'%(new_score-score))
st.metric('Similarity','%.5f' % (sim))
# st.write('Caching ZINC20 if necessary...')
with st.spinner("Caching ZINC20 if necessary..."):
if buy(new_smiles, catalog='zinc20',canonicalize=True):
st.write('This molecule exists.')
st.markdown("<h3 style='text-align: center; color: darkturquoise;'><b>This molecule exists.</h3>",unsafe_allow_html=True)
else:
# st.write('THIS MOLECULE DOES NOT EXIST!')
st.markdown("<h3 style='text-align: center; color: mediumseagreen;'>THIS MOLECULE DOES NOT EXIST!</h3>",unsafe_allow_html=True)
st.markdown("<p style='text-align: center; color: grey;'>Checked using molbloom</p>",unsafe_allow_html=True)
else: optim_single_con.empty()
def check_single(smiles):
# render_view()
st.session_state.smiles_selected = True
check_single_con = st.empty()
# optim = False
with check_single_con.container():
if len(smiles) == 0:
st.session_state.checked_single = 'EnterError'
else:
mol = Chem.MolFromSmiles(smiles)
if mol is None:
st.session_state.checked_single = 'MolError'
else:
st.session_state.smiles = Chem.MolToSmiles(mol)
st.session_state.logp,st.session_state.sa,st.session_state.cycle,st.session_state.pen_p = penalized_logp_standard(mol)
moses_passed = mol_passes_filters_custom(mol)
st.session_state.checked_single = moses_passed
def optim_single(smiles,lr,sim_cutoff,n_iter):
# render_view()
model = load_model()
new_smiles,sim = model.optimize(smiles, sim_cutoff=sim_cutoff, lr=lr, num_iter=n_iter)
return new_smiles,sim
def Optimize_a_batch():
st.empty()
def reset_oam_state():
st.session_state.smiles_selected = False
st.session_state.checked_single = 'NO'
st.session_state.smiles_checked = False
set_step(0)
def rerun():
st.experimental_rerun()
def render_view():
# render_sidebar(st.session_state.current_view,st.session_state.current_step)
form_header()
form_body()
render_view()
|