Spaces:
Sleeping
Sleeping
File size: 12,729 Bytes
321154b 8bd32d3 321154b b8cea97 308c0d8 2e4f09d 8bd32d3 b8cea97 2e4f09d b8cea97 8bd32d3 b8cea97 b15781c 321154b 308c0d8 321154b b8cea97 8bd32d3 b8cea97 5b900d3 b8cea97 5b900d3 b8cea97 3cf30a6 b8cea97 321154b b8cea97 b15781c b8cea97 321154b b15781c 321154b b8cea97 8bd32d3 b8cea97 8bd32d3 321154b 8bd32d3 b8cea97 308c0d8 321154b b8cea97 8bd32d3 b8cea97 8bd32d3 9f29cb1 8bd32d3 9f29cb1 8bd32d3 9f29cb1 8bd32d3 9f29cb1 8bd32d3 b8cea97 8bd32d3 b8cea97 8bd32d3 321154b 8bd32d3 e436758 2e4f09d e436758 8bd32d3 e436758 b8cea97 e436758 8bd32d3 9f29cb1 8bd32d3 9f29cb1 e436758 9f29cb1 f052b1c e436758 9f29cb1 8bd32d3 2e4f09d 8bd32d3 e436758 f052b1c e436758 8bd32d3 e436758 2e4f09d 9f29cb1 e436758 f052b1c e436758 8bd32d3 2e4f09d e436758 f052b1c e436758 8bd32d3 9f29cb1 2e4f09d 321154b f052b1c 321154b 8bd32d3 e436758 9f29cb1 2e4f09d e436758 8bd32d3 e436758 8bd32d3 321154b 9f29cb1 2e4f09d e436758 8bd32d3 e436758 2e4f09d 8bd32d3 e436758 8bd32d3 e436758 2e4f09d 9f29cb1 2e4f09d e436758 9f29cb1 2e4f09d 9f29cb1 2e4f09d 9f29cb1 2e4f09d 9f29cb1 b15781c 9f29cb1 b8cea97 9f29cb1 b8cea97 9f29cb1 b15781c 9f29cb1 b15781c ef3b477 9f29cb1 8bd32d3 9f29cb1 8bd32d3 b15781c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import ibis
import ibis.selectors as s
from ibis import _
import fiona
import geopandas as gpd
import rioxarray
from shapely.geometry import box
con = ibis.duckdb.connect()
con.load_extension("spatial")
threads = -1
agency_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-agency-name.parquet").select(manager_name_id = "Code", manager_name = "Dom")
agency_type = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-agency-type.parquet").select(manager_type_id = "Code", manager_type = "Dom")
desig_type = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-desgination-type.parquet").select(designation_type_id = "Code", designation_type = "Dom")
public_access = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-public-access.parquet").select(public_access_id = "Code", public_access = "Dom")
state_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-state-name.parquet").select(state = "Code", state_name = "Dom")
iucn = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-iucn.parquet").select(iucn_code = "CODE", iucn_category = "DOM")
fgb = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.fgb"
parquet = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.parquet"
# gdb = "https://data.source.coop/cboettig/pad-us-3/PADUS3/PAD_US3_0.gdb" # original, all tables
# or read the fgb version, much slower
# pad = con.read_geo(fgb)
# pad = con.read_parquet(parquet)
# Currently ibis doesn't detect that this is GeoParquet. We need a SQL escape-hatch to cast the geometry
con.raw_sql(f"CREATE OR REPLACE VIEW pad AS SELECT *, st_geomfromwkb(geometry) as geom from read_parquet('{parquet}')")
pad = con.table("pad")
# Get the CRS
# fiona is not built with parquet support, must read this from fgb. ideally duckdb's st_read_meta would do this from the parquet
meta = fiona.open(fgb)
crs = meta.crs
## optional getting bounds
# extract bounds. (in this case these are already in the same projection actually so r.rio.bounds() would work)
r = rioxarray.open_rasterio("https://data.source.coop/cboettig/mobi/species-richness-all/SpeciesRichness_All.tif")
bounds = box(*r.rio.transform_bounds(crs))
# +
# Now we can do all the usual SQL queries to subset the data. Note the `geom.within()` spatial filter!
focal_columns = ["row_n", "FeatClass", "Mang_Name",
"Mang_Type", "Des_Tp", "Pub_Access",
"GAP_Sts", "IUCN_Cat", "Unit_Nm",
"State_Nm", "EsmtHldr", "Date_Est",
"SHAPE_Area", "geom"]
pad_parquet = (
pad
.mutate(row_n=ibis.row_number())
.filter((_.FeatClass.isin(["Easement", "Fee"])) # | ((_.FeatClass == "Proclamation") & (_.Mang_Name == "TRIB"))
)
# .filter(_.geom.within(bounds))
.select(focal_columns)
.rename(geometry="geom")
)
# Need to revist this to also process the external polygons
# .filter(~ _.geom.within(bounds))
pad_parquet.to_parquet("pad-processed.parquet")
# +
# Add our custom bucket categories:
# really could be done seperately.
categorical_columns = ["bucket", "FeatClass", "Mang_Name",
"Mang_Type", "Des_Tp", "Pub_Access",
"GAP_Sts", "IUCN_Cat", "Unit_Nm",
"State_Nm", "EsmtHldr", "Date_Est",
"row_n"]
public = ["DIST", "LOC", "FED", "STAT", "JNT"]
case = (
ibis.case()
.when( (_.Mang_Type.isin(public) & _.GAP_Sts.isin(["1","2"])), "public conservation")
.when( (_.Mang_Type.isin(public) & _.GAP_Sts.isin(["3"])), "mixed use")
.when( (_.Mang_Type.isin(public) & _.GAP_Sts.isin(["4"])), "public unprotected")
.when( (_.Mang_Type.isin(["PVT", "NGO"]) & (_.GAP_Sts.isin(["1","2", "3"]))), "private conservation")
.when( (_.Mang_Type.isin(["PVT", "NGO"]) & (_.GAP_Sts.isin(["4"]))), "private unprotected")
.when( (_.Mang_Type == "TRIB"), "tribal")
.end()
)
pad_grouping = (
pad
.mutate(row_n=ibis.row_number())
.filter((_.FeatClass.isin(["Easement", "Fee"])) | (
(_.FeatClass == "Proclamation") & (_.Mang_Name == "TRIB"))
)
.mutate(bucket = case)
.select(categorical_columns)
.rename(manager_name_id = "Mang_Name",
manager_type_id = "Mang_Type",
designation_type_id = "Des_Tp",
public_access_id = "Pub_Access",
category = "FeatClass",
iucn_code = "IUCN_Cat",
gap_code = "GAP_Sts",
state = "State_Nm",
easement_holder = "EsmtHldr",
date_established = "Date_Est",
area_name = "Unit_Nm")
.left_join(agency_name, "manager_name_id")
.left_join(agency_type, "manager_type_id")
.left_join(desig_type, "designation_type_id")
.left_join(public_access, "public_access_id")
.left_join(state_name, "state")
.left_join(iucn, "iucn_code")
.select(~s.contains("_right"))
)
pad_grouping.to_parquet("pad-groupings.parquet")
# -
(pad_parquet
.rename(manager_name_id = "Mang_Name",
manager_type_id = "Mang_Type",
designation_type_id = "Des_Tp",
public_access_id = "Pub_Access",
category = "FeatClass",
iucn_code = "IUCN_Cat",
gap_code = "GAP_Sts",
state = "State_Nm",
easement_holder = "EsmtHldr",
date_established = "Date_Est",
area_square_meters = "SHAPE_Area",
area_name = "Unit_Nm")
.left_join(agency_name, "manager_name_id")
.left_join(agency_type, "manager_type_id")
.left_join(desig_type, "designation_type_id")
.left_join(public_access, "public_access_id")
.left_join(state_name, "state")
.left_join(iucn, "iucn_code")
.select(~s.contains("_right"))
# .select(~s.contains("_id"))
# if we keep the original geoparquet WKB 'geometry' column, to_pandas() (or execute) gives us only a normal pandas data.frame, and geopandas doesn't see the metadata.
# if we replace the geometry with duckdb-native 'geometry' type, to_pandas() gives us a geopanadas! But requires reading into RAM.
.to_pandas()
.set_crs(crs)
.to_parquet("pad-processed.parquet")
)
# +
import rasterio
from rasterstats import zonal_stats
import geopandas as gpd
import pandas as pd
from joblib import Parallel, delayed
def big_zonal_stats(vec_file, tif_file, stats, col_name, n_jobs, verbose = 10, timeout=10000):
# read in vector as geopandas, match CRS to raster
with rasterio.open(tif_file) as src:
raster_profile = src.profile
gdf = gpd.read_parquet(vec_file).to_crs(raster_profile['crs'])
# row_n is a global id, may refer to excluded polygons
# gdf["row_id"] = gdf.index + 1
# lamba fn to zonal_stats a slice:
def get_stats(geom_slice, tif_file, stats):
stats = zonal_stats(geom_slice.geometry, tif_file, stats = stats)
stats[0]['row_n'] = geom_slice.row_n
return stats[0]
# iteratation (could be a list comprehension?)
jobs = []
for r in gdf.itertuples():
jobs.append(delayed(get_stats)(r, tif_file, stats))
# And here we go
output = Parallel(n_jobs=n_jobs, timeout=timeout, verbose=verbose)(jobs)
# reshape output
df = (
pd.DataFrame(output)
.rename(columns={'mean': col_name})
.merge(gdf, how='right', on = 'row_n')
)
gdf = gpd.GeoDataFrame(df, geometry="geometry")
return gdf
# -
import geopandas as gpd
test = gpd.read_parquet("pad-processed.parquet")
test.columns
# +
# %%time
tif_file = "/home/rstudio/boettiger-lab/us-pa-policy/hfp_2021_100m_v1-2_cog.tif"
vec_file = './pad-processed.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
col_name = "human_impact", n_jobs=threads, verbose=0)
gpd.GeoDataFrame(df, geometry="geometry").to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/source.coop/cboettig/mobi/species-richness-all/SpeciesRichness_All.tif'
vec_file = './pad-stats.parquet'
big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "richness", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/source.coop/cboettig/mobi/range-size-rarity-all/RSR_All.tif'
vec_file = './pad-stats.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
col_name = "rsr", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/deforest_carbon_100m_cog.tif'
vec_file = './pad-stats.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
col_name = "deforest_carbon", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_bii_100m_cog.tif'
vec_file = './pad-stats.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
col_name = "biodiversity_intactness_loss", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_fii_100m_cog.tif'
vec_file = './pad-stats.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
col_name = "forest_integrity_loss", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif'
vec_file = './pad-stats.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "crop_expansion", n_jobs=threads, verbose=0)
gpd.GeoDataFrame(df, geometry="geometry").to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_reduction_100m_cog.tif'
vec_file = './pad-stats.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "crop_reduction", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/source.coop/cboettig/carbon/cogs/irrecoverable_c_total_2018.tif'
vec_file = './pad-stats.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "irrecoverable_carbon", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/source.coop/cboettig/carbon/cogs/manageable_c_total_2018.tif'
vec_file = './pad-stats.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "manageable_carbon", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_rwr_2022.tif'
vec_file = './pad-stats.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "all_species_rwr", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")
# +
# %%time
tif_file = '/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_sr_2022.tif'
vec_file = './pad-stats.parquet'
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "all_species_richness", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")
# +
columns = '''
area_name,
manager_name,
manager_name_id,
manager_type,
manager_type_id,
designation_type,
designation_type_id,
public_access,
category,
iucn_code,
iucn_category,
gap_code,
state,
state_name,
easement_holder,
date_established,
area_square_meters,
geometry,
all_species_richness,
all_species_rwr,
manageable_carbon,
irrecoverable_carbon,
crop_reduction,
crop_expansion,
deforest_carbon,
richness,
rsr,
forest_integrity_loss,
biodiversity_intactness_loss
'''
items = columns.split(',')
# Remove empty strings and whitespace
items = [item.strip() for item in items if item.strip()]
items
# -
import ibis
from ibis import _
df = ibis.read_parquet("pad-stats.parquet").select(items)
df.group_by(_.manager_type).aggregate(n = _.manager_type.count()).to_pandas()
# +
## create pad.duckdb
from sqlalchemy import create_engine
from sqlalchemy import text
db_uri = "duckdb:///pad.duckdb"
engine = create_engine(db_uri)
con = engine.connect()
con.execute(f"create or replace table pad as select {columns} from 'pad-stats.parquet'")
con.close()
# pad_stats = ibis.read_parquet("pad-stats.parquet")
# pad_stats.head(20).to_pandas()
# -
import pandas as pd
db_uri = "duckdb:///pad.duckdb"
engine = create_engine(db_uri)
con = engine.connect()
pd.DataFrame(con.execute("select * from pad limit 1").fetchall())
|