File size: 12,729 Bytes
321154b
8bd32d3
321154b
b8cea97
 
 
 
308c0d8
 
 
 
 
 
 
 
 
 
2e4f09d
8bd32d3
 
b8cea97
2e4f09d
 
b8cea97
 
 
 
8bd32d3
b8cea97
 
 
b15781c
 
 
 
321154b
308c0d8
321154b
 
 
 
b8cea97
8bd32d3
 
 
 
b8cea97
 
 
5b900d3
b8cea97
5b900d3
b8cea97
 
 
 
3cf30a6
 
 
 
b8cea97
321154b
b8cea97
b15781c
 
b8cea97
 
 
 
 
 
321154b
 
b15781c
 
 
 
 
321154b
 
 
b8cea97
8bd32d3
b8cea97
8bd32d3
321154b
8bd32d3
 
b8cea97
308c0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321154b
 
b8cea97
8bd32d3
 
b8cea97
8bd32d3
 
 
 
 
9f29cb1
8bd32d3
9f29cb1
8bd32d3
 
 
9f29cb1
8bd32d3
 
 
 
9f29cb1
 
8bd32d3
b8cea97
8bd32d3
 
b8cea97
 
 
 
8bd32d3
321154b
8bd32d3
 
 
 
 
 
e436758
2e4f09d
e436758
8bd32d3
 
 
 
e436758
b8cea97
 
e436758
8bd32d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f29cb1
8bd32d3
 
 
 
9f29cb1
 
e436758
 
 
9f29cb1
 
 
 
 
 
f052b1c
e436758
9f29cb1
8bd32d3
 
 
2e4f09d
8bd32d3
e436758
 
f052b1c
e436758
8bd32d3
 
e436758
2e4f09d
9f29cb1
e436758
f052b1c
e436758
 
8bd32d3
 
 
 
2e4f09d
e436758
f052b1c
e436758
 
8bd32d3
 
 
9f29cb1
2e4f09d
321154b
f052b1c
 
321154b
8bd32d3
 
e436758
9f29cb1
2e4f09d
e436758
8bd32d3
 
e436758
8bd32d3
 
321154b
9f29cb1
2e4f09d
e436758
8bd32d3
 
 
 
 
e436758
2e4f09d
8bd32d3
e436758
8bd32d3
 
 
 
e436758
2e4f09d
9f29cb1
 
 
 
 
 
2e4f09d
e436758
 
9f29cb1
 
 
 
2e4f09d
9f29cb1
 
 
 
 
 
2e4f09d
9f29cb1
 
 
 
 
 
2e4f09d
9f29cb1
b15781c
9f29cb1
 
b8cea97
 
 
 
9f29cb1
b8cea97
9f29cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b15781c
 
 
 
 
 
9f29cb1
b15781c
 
ef3b477
9f29cb1
 
 
8bd32d3
 
 
 
 
9f29cb1
8bd32d3
 
 
 
b15781c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import ibis
import ibis.selectors as s
from ibis import _
import fiona
import geopandas as gpd
import rioxarray
from shapely.geometry import box
con = ibis.duckdb.connect()
con.load_extension("spatial")
threads = -1

agency_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-agency-name.parquet").select(manager_name_id = "Code", manager_name = "Dom")
agency_type = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-agency-type.parquet").select(manager_type_id = "Code", manager_type = "Dom")
desig_type = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-desgination-type.parquet").select(designation_type_id = "Code", designation_type = "Dom")
public_access = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-public-access.parquet").select(public_access_id = "Code", public_access = "Dom")
state_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-state-name.parquet").select(state = "Code", state_name = "Dom")
iucn = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-iucn.parquet").select(iucn_code = "CODE", iucn_category = "DOM")

fgb = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.fgb"
parquet = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.parquet"
# gdb = "https://data.source.coop/cboettig/pad-us-3/PADUS3/PAD_US3_0.gdb" # original, all tables
# or read the fgb version, much slower
# pad = con.read_geo(fgb)
# pad = con.read_parquet(parquet)
# Currently ibis doesn't detect that this is GeoParquet.  We need a SQL escape-hatch to cast the geometry
con.raw_sql(f"CREATE OR REPLACE VIEW pad AS SELECT *, st_geomfromwkb(geometry) as geom from read_parquet('{parquet}')")
pad = con.table("pad")


# Get the CRS
# fiona is not built with parquet support, must read this from fgb.  ideally duckdb's st_read_meta would do this from the parquet
meta = fiona.open(fgb)
crs = meta.crs

## optional getting bounds
# extract bounds. (in this case these are already in the same projection actually so r.rio.bounds() would work)
r = rioxarray.open_rasterio("https://data.source.coop/cboettig/mobi/species-richness-all/SpeciesRichness_All.tif")
bounds = box(*r.rio.transform_bounds(crs))

# +
# Now we can do all the usual SQL queries to subset the data.  Note the `geom.within()` spatial filter!
focal_columns = ["row_n", "FeatClass", "Mang_Name", 
                 "Mang_Type",  "Des_Tp", "Pub_Access",
                 "GAP_Sts",  "IUCN_Cat",   "Unit_Nm",  
                 "State_Nm", "EsmtHldr", "Date_Est",
                 "SHAPE_Area", "geom"]
pad_parquet = (
    pad
    .mutate(row_n=ibis.row_number())
    .filter((_.FeatClass.isin(["Easement", "Fee"]))  # | ((_.FeatClass == "Proclamation") & (_.Mang_Name == "TRIB"))
           )
#    .filter(_.geom.within(bounds))  
    .select(focal_columns)
    .rename(geometry="geom")
)

# Need to revist this to also process the external polygons 
#     .filter(~  _.geom.within(bounds))  


pad_parquet.to_parquet("pad-processed.parquet")

# +
# Add our custom bucket categories:
# really could be done seperately.
categorical_columns = ["bucket", "FeatClass", "Mang_Name", 
                 "Mang_Type",  "Des_Tp", "Pub_Access",
                 "GAP_Sts",  "IUCN_Cat",   "Unit_Nm",  
                 "State_Nm", "EsmtHldr", "Date_Est",
                 "row_n"]
public = ["DIST", "LOC", "FED", "STAT", "JNT"]
case = (
    ibis.case()
    .when( (_.Mang_Type.isin(public) & _.GAP_Sts.isin(["1","2"])), "public conservation")
    .when( (_.Mang_Type.isin(public) & _.GAP_Sts.isin(["3"])), "mixed use")
    .when( (_.Mang_Type.isin(public) & _.GAP_Sts.isin(["4"])), "public unprotected")
    .when( (_.Mang_Type.isin(["PVT", "NGO"])  & (_.GAP_Sts.isin(["1","2", "3"]))), "private conservation")
    .when( (_.Mang_Type.isin(["PVT", "NGO"])  & (_.GAP_Sts.isin(["4"]))), "private unprotected")
    .when( (_.Mang_Type == "TRIB"), "tribal")
    .end()
)
pad_grouping = (
    pad
    .mutate(row_n=ibis.row_number())
    .filter((_.FeatClass.isin(["Easement", "Fee"])) | (
           (_.FeatClass == "Proclamation") & (_.Mang_Name == "TRIB"))
           )
    .mutate(bucket = case)
    .select(categorical_columns)
    .rename(manager_name_id = "Mang_Name", 
            manager_type_id = "Mang_Type", 
            designation_type_id = "Des_Tp",
            public_access_id = "Pub_Access",
            category = "FeatClass",
            iucn_code = "IUCN_Cat",
            gap_code = "GAP_Sts",
            state = "State_Nm",
            easement_holder = "EsmtHldr",
            date_established = "Date_Est",
            area_name = "Unit_Nm")
    .left_join(agency_name, "manager_name_id")
    .left_join(agency_type, "manager_type_id")
    .left_join(desig_type, "designation_type_id")
    .left_join(public_access, "public_access_id")
    .left_join(state_name, "state")
    .left_join(iucn, "iucn_code")
    .select(~s.contains("_right"))
)

pad_grouping.to_parquet("pad-groupings.parquet")
# -

(pad_parquet
    .rename(manager_name_id = "Mang_Name", 
            manager_type_id = "Mang_Type", 
            designation_type_id = "Des_Tp",
            public_access_id = "Pub_Access",
            category = "FeatClass",
            iucn_code = "IUCN_Cat",
            gap_code = "GAP_Sts",
            state = "State_Nm",
            easement_holder = "EsmtHldr",
            date_established = "Date_Est",
            area_square_meters = "SHAPE_Area",
            area_name = "Unit_Nm")
    .left_join(agency_name, "manager_name_id")
    .left_join(agency_type, "manager_type_id")
    .left_join(desig_type, "designation_type_id")
    .left_join(public_access, "public_access_id")
    .left_join(state_name, "state")
    .left_join(iucn, "iucn_code")
    .select(~s.contains("_right"))
#   .select(~s.contains("_id"))
# if we keep the original geoparquet WKB 'geometry' column, to_pandas() (or execute) gives us only a normal pandas data.frame, and geopandas doesn't see the metadata.
# if we replace the geometry with duckdb-native 'geometry' type, to_pandas() gives us a geopanadas!  But requires reading into RAM.  
    .to_pandas()
    .set_crs(crs)
    .to_parquet("pad-processed.parquet")
)


# +
import rasterio
from rasterstats import zonal_stats
import geopandas as gpd
import pandas as pd
from joblib import Parallel, delayed

def big_zonal_stats(vec_file, tif_file, stats, col_name, n_jobs, verbose = 10, timeout=10000):

    # read in vector as geopandas, match CRS to raster
    with rasterio.open(tif_file) as src:
        raster_profile = src.profile
    gdf = gpd.read_parquet(vec_file).to_crs(raster_profile['crs'])

    # row_n is a global id, may refer to excluded polygons
    # gdf["row_id"] = gdf.index + 1

    # lamba fn to zonal_stats a slice:
    def get_stats(geom_slice, tif_file, stats):
        stats = zonal_stats(geom_slice.geometry, tif_file, stats = stats)
        stats[0]['row_n'] = geom_slice.row_n
        return stats[0]
    
    # iteratation (could be a list comprehension?)
    jobs = []
    for r in gdf.itertuples():
        jobs.append(delayed(get_stats)(r, tif_file, stats))

    # And here we go
    output = Parallel(n_jobs=n_jobs, timeout=timeout, verbose=verbose)(jobs)

    # reshape output
    df = (
        pd.DataFrame(output)
        .rename(columns={'mean': col_name})
        .merge(gdf, how='right', on = 'row_n')
        )
    gdf = gpd.GeoDataFrame(df, geometry="geometry")
    return gdf



# -

import geopandas as gpd
test = gpd.read_parquet("pad-processed.parquet")
test.columns

# +
# %%time
tif_file = "/home/rstudio/boettiger-lab/us-pa-policy/hfp_2021_100m_v1-2_cog.tif"
vec_file = './pad-processed.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
                     col_name = "human_impact", n_jobs=threads, verbose=0)
gpd.GeoDataFrame(df, geometry="geometry").to_parquet("pad-stats.parquet")

# +
# %%time

tif_file = '/home/rstudio/source.coop/cboettig/mobi/species-richness-all/SpeciesRichness_All.tif'
vec_file = './pad-stats.parquet'

big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "richness", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")


# +
# %%time

tif_file = '/home/rstudio/source.coop/cboettig/mobi/range-size-rarity-all/RSR_All.tif'
vec_file = './pad-stats.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
                      col_name = "rsr", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")

# +
# %%time

tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/deforest_carbon_100m_cog.tif'
vec_file = './pad-stats.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], 
                     col_name = "deforest_carbon", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")

# +
# %%time

tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_bii_100m_cog.tif'
vec_file = './pad-stats.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], 
                     col_name = "biodiversity_intactness_loss", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")

# +
# %%time

tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_fii_100m_cog.tif'
vec_file = './pad-stats.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
                     col_name = "forest_integrity_loss", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")

# +
# %%time

tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif'
vec_file = './pad-stats.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],  col_name = "crop_expansion", n_jobs=threads, verbose=0)
gpd.GeoDataFrame(df, geometry="geometry").to_parquet("pad-stats.parquet")

# +
# %%time
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_reduction_100m_cog.tif'
vec_file = './pad-stats.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],  col_name = "crop_reduction", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")

# +
# %%time
tif_file = '/home/rstudio/source.coop/cboettig/carbon/cogs/irrecoverable_c_total_2018.tif'
vec_file = './pad-stats.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],  col_name = "irrecoverable_carbon", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")

# +
# %%time
tif_file = '/home/rstudio/source.coop/cboettig/carbon/cogs/manageable_c_total_2018.tif'
vec_file = './pad-stats.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],  col_name = "manageable_carbon", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")

# +
# %%time
tif_file = '/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_rwr_2022.tif'
vec_file = './pad-stats.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],  col_name = "all_species_rwr", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")

# +
# %%time
tif_file = '/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_sr_2022.tif'
vec_file = './pad-stats.parquet'

df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],  col_name = "all_species_richness", n_jobs=threads, verbose=0).to_parquet("pad-stats.parquet")

# +
columns = '''
area_name,
manager_name,
manager_name_id,
manager_type,
manager_type_id,
designation_type,
designation_type_id,
public_access,
category,
iucn_code,
iucn_category,
gap_code,
state,
state_name,
easement_holder,
date_established,
area_square_meters,
geometry,
all_species_richness,
all_species_rwr,
manageable_carbon,
irrecoverable_carbon,
crop_reduction,
crop_expansion,
deforest_carbon,
richness,
rsr,
forest_integrity_loss,
biodiversity_intactness_loss
'''

items = columns.split(',')
# Remove empty strings and whitespace
items = [item.strip() for item in items if item.strip()]
items
# -

import ibis
from ibis import _
df = ibis.read_parquet("pad-stats.parquet").select(items)
df.group_by(_.manager_type).aggregate(n = _.manager_type.count()).to_pandas()

# +
## create pad.duckdb
from sqlalchemy import create_engine
from sqlalchemy import text
db_uri = "duckdb:///pad.duckdb"
engine = create_engine(db_uri)
con = engine.connect()
con.execute(f"create or replace table pad as select {columns} from 'pad-stats.parquet'")
con.close()

# pad_stats = ibis.read_parquet("pad-stats.parquet")
# pad_stats.head(20).to_pandas()
# -

import pandas as pd
db_uri = "duckdb:///pad.duckdb"
engine = create_engine(db_uri)
con = engine.connect()
pd.DataFrame(con.execute("select * from pad limit 1").fetchall())