Spaces:
Sleeping
Sleeping
resizing
Browse files- AK-HI-preprocess.py +0 -272
- app.py +6 -3
- chatmap.py +0 -58
- pad-AK-HI-stats.parquet +0 -3
- pad-stats.parquet +0 -3
- pad.duckdb +0 -3
- preprocess.py +2 -8
- raster-vector-extract.py +6 -2
AK-HI-preprocess.py
DELETED
@@ -1,272 +0,0 @@
|
|
1 |
-
# +
|
2 |
-
import ibis
|
3 |
-
import ibis.selectors as s
|
4 |
-
from ibis import _
|
5 |
-
import fiona
|
6 |
-
import geopandas as gpd
|
7 |
-
import rioxarray
|
8 |
-
from shapely.geometry import box
|
9 |
-
|
10 |
-
vec_file = 'pad-AK-HI-stats.parquet'
|
11 |
-
|
12 |
-
|
13 |
-
# +
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
fgb = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.fgb"
|
18 |
-
parquet = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.parquet"
|
19 |
-
# gdb = "https://data.source.coop/cboettig/pad-us-3/PADUS3/PAD_US3_0.gdb" # original, all tables
|
20 |
-
|
21 |
-
con = ibis.duckdb.connect()
|
22 |
-
con.load_extension("spatial")
|
23 |
-
threads = 1
|
24 |
-
|
25 |
-
# or read the fgb version, much slower
|
26 |
-
# pad = con.read_geo(fgb)
|
27 |
-
# pad = con.read_parquet(parquet)
|
28 |
-
# Currently ibis doesn't detect that this is GeoParquet. We need a SQL escape-hatch to cast the geometry
|
29 |
-
|
30 |
-
agency_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-agency-name.parquet").select(manager_name_id = "Code", manager_name = "Dom")
|
31 |
-
agency_type = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-agency-type.parquet").select(manager_type_id = "Code", manager_type = "Dom")
|
32 |
-
desig_type = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-desgination-type.parquet").select(designation_type_id = "Code", designation_type = "Dom")
|
33 |
-
public_access = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-public-access.parquet").select(public_access_id = "Code", public_access = "Dom")
|
34 |
-
state_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-state-name.parquet").select(state = "Code", state_name = "Dom")
|
35 |
-
iucn = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-iucn.parquet").select(iucn_code = "CODE", iucn_category = "DOM")
|
36 |
-
|
37 |
-
con.raw_sql(f"CREATE OR REPLACE VIEW pad AS SELECT *, st_geomfromwkb(geometry) as geom from read_parquet('{parquet}')")
|
38 |
-
pad = con.table("pad")
|
39 |
-
# -
|
40 |
-
|
41 |
-
|
42 |
-
# Get the CRS
|
43 |
-
# fiona is not built with parquet support, must read this from fgb. ideally duckdb's st_read_meta would do this from the parquet
|
44 |
-
meta = fiona.open(fgb)
|
45 |
-
crs = meta.crs
|
46 |
-
|
47 |
-
# Now we can do all the usual SQL queries to subset the data. Note the `geom.within()` spatial filter!
|
48 |
-
focal_columns = ["row_n", "FeatClass", "Mang_Name",
|
49 |
-
"Mang_Type", "Des_Tp", "Pub_Access",
|
50 |
-
"GAP_Sts", "IUCN_Cat", "Unit_Nm",
|
51 |
-
"State_Nm", "EsmtHldr", "Date_Est",
|
52 |
-
"SHAPE_Area", "geom"]
|
53 |
-
(
|
54 |
-
pad
|
55 |
-
.mutate(row_n=ibis.row_number())
|
56 |
-
.filter(_.FeatClass.isin(["Easement", "Fee"]))
|
57 |
-
.filter(_.State_Nm.isin(["AK", "HI"]))
|
58 |
-
.select(focal_columns)
|
59 |
-
.rename(geometry="geom")
|
60 |
-
.rename(manager_name_id = "Mang_Name",
|
61 |
-
manager_type_id = "Mang_Type",
|
62 |
-
designation_type_id = "Des_Tp",
|
63 |
-
public_access_id = "Pub_Access",
|
64 |
-
category = "FeatClass",
|
65 |
-
iucn_code = "IUCN_Cat",
|
66 |
-
gap_code = "GAP_Sts",
|
67 |
-
state = "State_Nm",
|
68 |
-
easement_holder = "EsmtHldr",
|
69 |
-
date_established = "Date_Est",
|
70 |
-
area_square_meters = "SHAPE_Area",
|
71 |
-
area_name = "Unit_Nm")
|
72 |
-
.left_join(agency_name, "manager_name_id")
|
73 |
-
.left_join(agency_type, "manager_type_id")
|
74 |
-
.left_join(desig_type, "designation_type_id")
|
75 |
-
.left_join(public_access, "public_access_id")
|
76 |
-
.left_join(state_name, "state")
|
77 |
-
.left_join(iucn, "iucn_code")
|
78 |
-
.select(~s.contains("_right"))
|
79 |
-
# .select(~s.contains("_id"))
|
80 |
-
# if we keep the original geoparquet WKB 'geometry' column, to_pandas() (or execute) gives us only a normal pandas data.frame, and geopandas doesn't see the metadata.
|
81 |
-
# if we replace the geometry with duckdb-native 'geometry' type, to_pandas() gives us a geopanadas! But requires reading into RAM.
|
82 |
-
.to_pandas()
|
83 |
-
.set_crs(crs)
|
84 |
-
.to_parquet(vec_file)
|
85 |
-
)
|
86 |
-
|
87 |
-
# +
|
88 |
-
import rasterio
|
89 |
-
from rasterstats import zonal_stats
|
90 |
-
import geopandas as gpd
|
91 |
-
import pandas as pd
|
92 |
-
from joblib import Parallel, delayed
|
93 |
-
|
94 |
-
def big_zonal_stats(vec_file, tif_file, stats, col_name, n_jobs, verbose = 10, timeout=10000):
|
95 |
-
|
96 |
-
# read in vector as geopandas, match CRS to raster
|
97 |
-
with rasterio.open(tif_file) as src:
|
98 |
-
raster_profile = src.profile
|
99 |
-
gdf = gpd.read_parquet(vec_file).to_crs(raster_profile['crs'])
|
100 |
-
|
101 |
-
# row_n is a global id, may refer to excluded polygons
|
102 |
-
# gdf["row_id"] = gdf.index + 1
|
103 |
-
|
104 |
-
# lamba fn to zonal_stats a slice:
|
105 |
-
def get_stats(geom_slice, tif_file, stats):
|
106 |
-
stats = zonal_stats(geom_slice.geometry, tif_file, stats = stats)
|
107 |
-
stats[0]['row_n'] = geom_slice.row_n
|
108 |
-
# print(geom_slice.row_n)
|
109 |
-
return stats[0]
|
110 |
-
|
111 |
-
# iteratation (could be a list comprehension?)
|
112 |
-
jobs = []
|
113 |
-
for r in gdf.itertuples():
|
114 |
-
jobs.append(delayed(get_stats)(r, tif_file, stats))
|
115 |
-
|
116 |
-
# And here we go
|
117 |
-
output = Parallel(n_jobs=n_jobs, timeout=timeout, verbose=verbose)(jobs)
|
118 |
-
|
119 |
-
# reshape output
|
120 |
-
df = (
|
121 |
-
pd.DataFrame(output)
|
122 |
-
.rename(columns={'mean': col_name})
|
123 |
-
.merge(gdf, how='right', on = 'row_n')
|
124 |
-
)
|
125 |
-
gdf = gpd.GeoDataFrame(df, geometry="geometry")
|
126 |
-
return gdf
|
127 |
-
|
128 |
-
|
129 |
-
# -
|
130 |
-
|
131 |
-
|
132 |
-
tif_file = "/home/rstudio/boettiger-lab/us-pa-policy/hfp_2021_100m_v1-2_cog.tif"
|
133 |
-
threads=1
|
134 |
-
|
135 |
-
# +
|
136 |
-
#import geopandas as gpd
|
137 |
-
#test = gpd.read_parquet("pad-processed.parquet")
|
138 |
-
#test.columns
|
139 |
-
|
140 |
-
# +
|
141 |
-
# %%time
|
142 |
-
#
|
143 |
-
tif_file = "/home/rstudio/boettiger-lab/us-pa-policy/hfp_2021_100m_v1-2_cog.tif"
|
144 |
-
|
145 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
|
146 |
-
col_name = "human_impact", n_jobs=1, verbose=0)
|
147 |
-
gpd.GeoDataFrame(df, geometry="geometry").to_parquet(vec_file)
|
148 |
-
# -
|
149 |
-
|
150 |
-
# %%time
|
151 |
-
tif_file = '/home/rstudio/source.coop/cboettig/mobi/species-richness-all/SpeciesRichness_All.tif'
|
152 |
-
big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "richness", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
153 |
-
|
154 |
-
|
155 |
-
# +
|
156 |
-
# %%time
|
157 |
-
|
158 |
-
tif_file = '/home/rstudio/source.coop/cboettig/mobi/range-size-rarity-all/RSR_All.tif'
|
159 |
-
|
160 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
|
161 |
-
col_name = "rsr", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
162 |
-
|
163 |
-
# +
|
164 |
-
# %%time
|
165 |
-
|
166 |
-
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/deforest_carbon_100m_cog.tif'
|
167 |
-
|
168 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
|
169 |
-
col_name = "deforest_carbon", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
170 |
-
|
171 |
-
# +
|
172 |
-
# %%time
|
173 |
-
|
174 |
-
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_bii_100m_cog.tif'
|
175 |
-
|
176 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
|
177 |
-
col_name = "biodiversity_intactness_loss", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
178 |
-
|
179 |
-
# +
|
180 |
-
# %%time
|
181 |
-
|
182 |
-
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_fii_100m_cog.tif'
|
183 |
-
|
184 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
|
185 |
-
col_name = "forest_integrity_loss", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
186 |
-
|
187 |
-
# +
|
188 |
-
# %%time
|
189 |
-
|
190 |
-
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif'
|
191 |
-
|
192 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "crop_expansion", n_jobs=threads, verbose=0)
|
193 |
-
gpd.GeoDataFrame(df, geometry="geometry").to_parquet(vec_file)
|
194 |
-
|
195 |
-
# +
|
196 |
-
# %%time
|
197 |
-
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_reduction_100m_cog.tif'
|
198 |
-
|
199 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "crop_reduction", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
200 |
-
|
201 |
-
# +
|
202 |
-
# %%time
|
203 |
-
tif_file = '/home/rstudio/source.coop/cboettig/carbon/cogs/irrecoverable_c_total_2018.tif'
|
204 |
-
|
205 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "irrecoverable_carbon", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
206 |
-
|
207 |
-
# +
|
208 |
-
# %%time
|
209 |
-
tif_file = '/home/rstudio/source.coop/cboettig/carbon/cogs/manageable_c_total_2018.tif'
|
210 |
-
|
211 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "manageable_carbon", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
212 |
-
|
213 |
-
# +
|
214 |
-
# %%time
|
215 |
-
tif_file = '/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_rwr_2022.tif'
|
216 |
-
|
217 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "all_species_rwr", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
218 |
-
|
219 |
-
# +
|
220 |
-
# %%time
|
221 |
-
tif_file = '/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_sr_2022.tif'
|
222 |
-
|
223 |
-
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "all_species_richness", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
224 |
-
|
225 |
-
# +
|
226 |
-
columns = '''
|
227 |
-
area_name,
|
228 |
-
manager_name,
|
229 |
-
manager_name_id,
|
230 |
-
manager_type,
|
231 |
-
manager_type_id,
|
232 |
-
manager_group,
|
233 |
-
designation_type,
|
234 |
-
designation_type_id,
|
235 |
-
public_access,
|
236 |
-
category,
|
237 |
-
iucn_code,
|
238 |
-
iucn_category,
|
239 |
-
gap_code,
|
240 |
-
state,
|
241 |
-
state_name,
|
242 |
-
easement_holder,
|
243 |
-
date_established,
|
244 |
-
area_square_meters,
|
245 |
-
geometry,
|
246 |
-
all_species_richness,
|
247 |
-
all_species_rwr,
|
248 |
-
manageable_carbon,
|
249 |
-
irrecoverable_carbon,
|
250 |
-
crop_reduction,
|
251 |
-
crop_expansion,
|
252 |
-
deforest_carbon,
|
253 |
-
richness,
|
254 |
-
rsr,
|
255 |
-
forest_integrity_loss,
|
256 |
-
biodiversity_intactness_loss
|
257 |
-
'''
|
258 |
-
|
259 |
-
items = columns.split(',')
|
260 |
-
# Remove empty strings and whitespace
|
261 |
-
items = [item.strip() for item in items if item.strip()]
|
262 |
-
items
|
263 |
-
# -
|
264 |
-
|
265 |
-
import ibis
|
266 |
-
from ibis import _
|
267 |
-
df = ibis.read_parquet(vec_file).select(items).to_parquet(vec_file)
|
268 |
-
|
269 |
-
|
270 |
-
import ibis
|
271 |
-
from ibis import _
|
272 |
-
ibis.read_parquet("pad-AK-HI-stats.parquet")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -115,12 +115,12 @@ def area_plot(df, column):
|
|
115 |
alt.Theta("percent_protected:Q").stack(True),
|
116 |
)
|
117 |
pie = ( base
|
118 |
-
.mark_arc(innerRadius= 40, outerRadius=
|
119 |
.encode(alt.Color("color:N").scale(None).legend(None),
|
120 |
tooltip=['percent_protected', 'hectares_protected', column])
|
121 |
)
|
122 |
text = ( base
|
123 |
-
.mark_text(radius=
|
124 |
.encode(text = column + ":N")
|
125 |
)
|
126 |
plot = pie # pie + text
|
@@ -292,12 +292,15 @@ bil_fill = {
|
|
292 |
"fill-extrusion-opacity": 0.9,
|
293 |
}
|
294 |
|
|
|
|
|
|
|
295 |
|
296 |
# +
|
297 |
st.set_page_config(layout="wide", page_title="Protected Areas Explorer", page_icon=":globe:")
|
298 |
|
299 |
'''
|
300 |
-
# US
|
301 |
|
302 |
'''
|
303 |
|
|
|
115 |
alt.Theta("percent_protected:Q").stack(True),
|
116 |
)
|
117 |
pie = ( base
|
118 |
+
.mark_arc(innerRadius= 40, outerRadius=100)
|
119 |
.encode(alt.Color("color:N").scale(None).legend(None),
|
120 |
tooltip=['percent_protected', 'hectares_protected', column])
|
121 |
)
|
122 |
text = ( base
|
123 |
+
.mark_text(radius=80, size=14, color="white")
|
124 |
.encode(text = column + ":N")
|
125 |
)
|
126 |
plot = pie # pie + text
|
|
|
292 |
"fill-extrusion-opacity": 0.9,
|
293 |
}
|
294 |
|
295 |
+
###########################################################################################################
|
296 |
+
|
297 |
+
|
298 |
|
299 |
# +
|
300 |
st.set_page_config(layout="wide", page_title="Protected Areas Explorer", page_icon=":globe:")
|
301 |
|
302 |
'''
|
303 |
+
# US Conservation Atlas Prototype
|
304 |
|
305 |
'''
|
306 |
|
chatmap.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
# This example does not use a langchain agent,
|
2 |
-
# The langchain sql chain has knowledge of the database, but doesn't interact with it becond intialization.
|
3 |
-
# The output of the sql chain is parsed seperately and passed to `duckdb.sql()` by streamlit
|
4 |
-
|
5 |
-
import streamlit as st
|
6 |
-
|
7 |
-
## Database connection
|
8 |
-
from sqlalchemy import create_engine
|
9 |
-
from langchain.sql_database import SQLDatabase
|
10 |
-
db_uri = "duckdb:///pad.duckdb"
|
11 |
-
engine = create_engine(db_uri, connect_args={'read_only': True})
|
12 |
-
db = SQLDatabase(engine, view_support=True)
|
13 |
-
|
14 |
-
import duckdb
|
15 |
-
|
16 |
-
con = duckdb.connect("pad.duckdb", read_only=True)
|
17 |
-
con.install_extension("spatial")
|
18 |
-
con.load_extension("spatial")
|
19 |
-
|
20 |
-
## ChatGPT Connection
|
21 |
-
from langchain_openai import ChatOpenAI
|
22 |
-
chatgpt_llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, api_key=st.secrets["OPENAI_API_KEY"])
|
23 |
-
chatgpt4_llm = ChatOpenAI(model="gpt-4", temperature=0, api_key=st.secrets["OPENAI_API_KEY"])
|
24 |
-
|
25 |
-
|
26 |
-
# Requires ollama server running locally
|
27 |
-
from langchain_community.llms import Ollama
|
28 |
-
## # from langchain_community.llms import ChatOllama
|
29 |
-
ollama_llm = Ollama(model="duckdb-nsql", temperature=0)
|
30 |
-
|
31 |
-
models = {"ollama": ollama_llm, "chatgpt3.5": chatgpt_llm, "chatgpt4": chatgpt4_llm}
|
32 |
-
with st.sidebar:
|
33 |
-
choice = st.radio("Select an LLM:", models)
|
34 |
-
llm = models[choice]
|
35 |
-
|
36 |
-
## A SQL Chain
|
37 |
-
from langchain.chains import create_sql_query_chain
|
38 |
-
chain = create_sql_query_chain(llm, db)
|
39 |
-
|
40 |
-
# agent does not work
|
41 |
-
# agent = create_sql_agent(llm, db=db, verbose=True)
|
42 |
-
|
43 |
-
if prompt := st.chat_input():
|
44 |
-
st.chat_message("user").write(prompt)
|
45 |
-
with st.chat_message("assistant"):
|
46 |
-
response = chain.invoke({"question": prompt})
|
47 |
-
st.write(response)
|
48 |
-
|
49 |
-
tbl = con.sql(response).to_df()
|
50 |
-
st.dataframe(tbl)
|
51 |
-
|
52 |
-
|
53 |
-
# duckdb_sql fails but chatgpt3.5 succeeds with a query like:
|
54 |
-
# use the st_area function and st_GeomFromWKB functions to compute the area of the Shape column in the fee table, and then use that to compute the total area under each GAP_Sts category
|
55 |
-
|
56 |
-
|
57 |
-
# Federal agencies are identified as 'FED' in the Mang_Type column in the 'combined' data table. The Mang_Name column indicates the different agencies. Which federal agencies manage the greatest area of GAP_Sts 1 or 2 land?
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pad-AK-HI-stats.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b1019bf85ac264c5ebe437ebfea942809bf9df6394837c54f315bc94b487c566
|
3 |
-
size 151708809
|
|
|
|
|
|
|
|
pad-stats.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7ac89736cc42bb2390853137b2793b9e9f1d4d11cefc34f307a1280043243ca1
|
3 |
-
size 894911787
|
|
|
|
|
|
|
|
pad.duckdb
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fd6f7206c3d03bdd00516f53e9fded8037bcbbf98ee3a8d9a90c1bc258cb47f7
|
3 |
-
size 1084502016
|
|
|
|
|
|
|
|
preprocess.py
CHANGED
@@ -16,8 +16,6 @@ public_access = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/
|
|
16 |
state_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-state-name.parquet").select(state = "Code", state_name = "Dom")
|
17 |
iucn = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-iucn.parquet").select(iucn_code = "CODE", iucn_category = "DOM")
|
18 |
|
19 |
-
# +
|
20 |
-
|
21 |
fgb = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.fgb"
|
22 |
parquet = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.parquet"
|
23 |
# gdb = "https://data.source.coop/cboettig/pad-us-3/PADUS3/PAD_US3_0.gdb" # original, all tables
|
@@ -25,11 +23,8 @@ parquet = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.parquet"
|
|
25 |
# pad = con.read_geo(fgb)
|
26 |
# pad = con.read_parquet(parquet)
|
27 |
# Currently ibis doesn't detect that this is GeoParquet. We need a SQL escape-hatch to cast the geometry
|
28 |
-
|
29 |
-
|
30 |
con.raw_sql(f"CREATE OR REPLACE VIEW pad AS SELECT *, st_geomfromwkb(geometry) as geom from read_parquet('{parquet}')")
|
31 |
pad = con.table("pad")
|
32 |
-
# -
|
33 |
|
34 |
|
35 |
# Get the CRS
|
@@ -52,10 +47,9 @@ focal_columns = ["row_n", "FeatClass", "Mang_Name",
|
|
52 |
pad_parquet = (
|
53 |
pad
|
54 |
.mutate(row_n=ibis.row_number())
|
55 |
-
.filter((_.FeatClass.isin(["Easement", "Fee"])) | (
|
56 |
-
(_.FeatClass == "Proclamation") & (_.Mang_Name == "TRIB"))
|
57 |
)
|
58 |
-
.filter(_.geom.within(bounds))
|
59 |
.select(focal_columns)
|
60 |
.rename(geometry="geom")
|
61 |
)
|
|
|
16 |
state_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-state-name.parquet").select(state = "Code", state_name = "Dom")
|
17 |
iucn = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-iucn.parquet").select(iucn_code = "CODE", iucn_category = "DOM")
|
18 |
|
|
|
|
|
19 |
fgb = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.fgb"
|
20 |
parquet = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.parquet"
|
21 |
# gdb = "https://data.source.coop/cboettig/pad-us-3/PADUS3/PAD_US3_0.gdb" # original, all tables
|
|
|
23 |
# pad = con.read_geo(fgb)
|
24 |
# pad = con.read_parquet(parquet)
|
25 |
# Currently ibis doesn't detect that this is GeoParquet. We need a SQL escape-hatch to cast the geometry
|
|
|
|
|
26 |
con.raw_sql(f"CREATE OR REPLACE VIEW pad AS SELECT *, st_geomfromwkb(geometry) as geom from read_parquet('{parquet}')")
|
27 |
pad = con.table("pad")
|
|
|
28 |
|
29 |
|
30 |
# Get the CRS
|
|
|
47 |
pad_parquet = (
|
48 |
pad
|
49 |
.mutate(row_n=ibis.row_number())
|
50 |
+
.filter((_.FeatClass.isin(["Easement", "Fee"])) # | ((_.FeatClass == "Proclamation") & (_.Mang_Name == "TRIB"))
|
|
|
51 |
)
|
52 |
+
# .filter(_.geom.within(bounds))
|
53 |
.select(focal_columns)
|
54 |
.rename(geometry="geom")
|
55 |
)
|
raster-vector-extract.py
CHANGED
@@ -32,6 +32,9 @@ def extract(raster, vector, layer, output = None):
|
|
32 |
vector = "/home/rstudio/source.coop/cboettig/pad-us-3/PADUS3_0Geopackage.gpkg"
|
33 |
layer = "PADUS3_0Combined_DOD_TRIB_Fee_Designation_Easement"
|
34 |
|
|
|
|
|
|
|
35 |
rasters = [
|
36 |
"/home/rstudio/boettiger-lab/us-pa-policy/hfp_2021_100m_v1-2_cog.tif",
|
37 |
'/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/deforest_carbon_100m_cog.tif',
|
@@ -43,8 +46,9 @@ rasters = [
|
|
43 |
'/home/rstudio/source.coop/cboettig/carbon/cogs/manageable_c_total_2018.tif',
|
44 |
'/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_rwr_2022.tif',
|
45 |
'/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_sr_2022.tif',
|
46 |
-
#
|
47 |
-
|
|
|
48 |
]
|
49 |
# extract(rasters[0], vector, layer) # just one
|
50 |
|
|
|
32 |
vector = "/home/rstudio/source.coop/cboettig/pad-us-3/PADUS3_0Geopackage.gpkg"
|
33 |
layer = "PADUS3_0Combined_DOD_TRIB_Fee_Designation_Easement"
|
34 |
|
35 |
+
# +
|
36 |
+
# Can possibly use remote addresses just fine with vsicurl
|
37 |
+
|
38 |
rasters = [
|
39 |
"/home/rstudio/boettiger-lab/us-pa-policy/hfp_2021_100m_v1-2_cog.tif",
|
40 |
'/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/deforest_carbon_100m_cog.tif',
|
|
|
46 |
'/home/rstudio/source.coop/cboettig/carbon/cogs/manageable_c_total_2018.tif',
|
47 |
'/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_rwr_2022.tif',
|
48 |
'/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_sr_2022.tif',
|
49 |
+
# CONUS coverage only
|
50 |
+
'/home/rstudio/source.coop/cboettig/mobi/species-richness-all/mobi-species-richness.tif', # byte-encoded gdal_translate -ot Byte <in> <out>
|
51 |
+
'/home/rstudio/source.coop/cboettig/mobi/range-size-rarity-all/RSR_All.tif',
|
52 |
]
|
53 |
# extract(rasters[0], vector, layer) # just one
|
54 |
|