Spaces:
Running
Running
might be done now?
Browse files
app.py
CHANGED
@@ -8,79 +8,75 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
8 |
model_id = "thrishala/mental_health_chatbot"
|
9 |
|
10 |
try:
|
11 |
-
# Load model with appropriate
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
model_id,
|
14 |
-
device_map="auto",
|
15 |
torch_dtype=torch.float16,
|
16 |
low_cpu_mem_usage=True,
|
17 |
max_memory={0: "15GiB"} if torch.cuda.is_available() else None,
|
18 |
offload_folder="offload",
|
19 |
-
).eval()
|
20 |
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
-
tokenizer.pad_token = tokenizer.eos_token
|
23 |
-
|
24 |
-
# Perform a dummy generation to initialize model (if needed)
|
25 |
-
dummy_input = tokenizer("This is a test.", return_tensors="pt").to(model.device)
|
26 |
-
model.generate(
|
27 |
-
input_ids=dummy_input.input_ids,
|
28 |
-
max_new_tokens=1,
|
29 |
-
return_dict_in_generate=True # Correct parameter name
|
30 |
-
)
|
31 |
|
32 |
except Exception as e:
|
33 |
print(f"Error loading model: {e}")
|
34 |
exit()
|
35 |
|
36 |
-
def generate_text(prompt, max_new_tokens=128):
|
37 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
38 |
-
|
39 |
-
with torch.no_grad():
|
40 |
-
output = model.generate(
|
41 |
-
input_ids=input_ids,
|
42 |
-
max_new_tokens=max_new_tokens,
|
43 |
-
do_sample=False,
|
44 |
-
eos_token_id=tokenizer.eos_token_id,
|
45 |
-
return_dict_in_generate=True # Correct parameter name
|
46 |
-
)
|
47 |
-
|
48 |
-
generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
|
49 |
-
return generated_text
|
50 |
-
|
51 |
def generate_text_streaming(prompt, max_new_tokens=128):
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
with torch.no_grad():
|
55 |
for _ in range(max_new_tokens):
|
56 |
-
|
57 |
-
|
58 |
max_new_tokens=1,
|
59 |
do_sample=False,
|
60 |
eos_token_id=tokenizer.eos_token_id,
|
61 |
-
return_dict_in_generate=True
|
62 |
)
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
73 |
break
|
74 |
|
75 |
def respond(message, history, system_message, max_tokens):
|
|
|
76 |
prompt = f"{system_message}\n"
|
77 |
for user_msg, bot_msg in history:
|
78 |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
79 |
prompt += f"User: {message}\nAssistant:"
|
80 |
-
|
|
|
|
|
|
|
81 |
try:
|
82 |
-
for
|
83 |
-
yield
|
|
|
|
|
|
|
84 |
except Exception as e:
|
85 |
print(f"Error during generation: {e}")
|
86 |
yield "An error occurred."
|
@@ -92,7 +88,7 @@ demo = gr.ChatInterface(
|
|
92 |
value="You are a friendly and helpful mental health chatbot.",
|
93 |
label="System message",
|
94 |
),
|
95 |
-
gr.Slider(minimum=1, maximum=
|
96 |
],
|
97 |
)
|
98 |
|
|
|
8 |
model_id = "thrishala/mental_health_chatbot"
|
9 |
|
10 |
try:
|
11 |
+
# Load model with appropriate settings
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
model_id,
|
14 |
+
device_map="auto",
|
15 |
torch_dtype=torch.float16,
|
16 |
low_cpu_mem_usage=True,
|
17 |
max_memory={0: "15GiB"} if torch.cuda.is_available() else None,
|
18 |
offload_folder="offload",
|
19 |
+
).eval()
|
20 |
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
+
tokenizer.pad_token = tokenizer.eos_token
|
23 |
+
tokenizer.model_max_length = 4096 # Set to model's actual context length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
except Exception as e:
|
26 |
print(f"Error loading model: {e}")
|
27 |
exit()
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def generate_text_streaming(prompt, max_new_tokens=128):
|
30 |
+
inputs = tokenizer(
|
31 |
+
prompt,
|
32 |
+
return_tensors="pt",
|
33 |
+
truncation=True,
|
34 |
+
max_length=4096 # Match model's context length
|
35 |
+
).to(model.device)
|
36 |
+
|
37 |
+
generated_tokens = []
|
38 |
with torch.no_grad():
|
39 |
for _ in range(max_new_tokens):
|
40 |
+
outputs = model.generate(
|
41 |
+
**inputs,
|
42 |
max_new_tokens=1,
|
43 |
do_sample=False,
|
44 |
eos_token_id=tokenizer.eos_token_id,
|
45 |
+
return_dict_in_generate=True
|
46 |
)
|
47 |
+
|
48 |
+
new_token = outputs.sequences[0, -1]
|
49 |
+
generated_tokens.append(new_token)
|
50 |
+
|
51 |
+
# Update inputs for next iteration
|
52 |
+
inputs = {
|
53 |
+
"input_ids": torch.cat([inputs["input_ids"], new_token.unsqueeze(0).unsqueeze(0)], dim=-1),
|
54 |
+
"attention_mask": torch.cat([inputs["attention_mask"], torch.ones(1, 1, device=model.device)], dim=-1)
|
55 |
+
}
|
56 |
+
|
57 |
+
# Decode the accumulated tokens
|
58 |
+
current_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
59 |
+
yield current_text # Yield the full text so far
|
60 |
+
|
61 |
+
if new_token == tokenizer.eos_token_id:
|
62 |
break
|
63 |
|
64 |
def respond(message, history, system_message, max_tokens):
|
65 |
+
# Build prompt with full history
|
66 |
prompt = f"{system_message}\n"
|
67 |
for user_msg, bot_msg in history:
|
68 |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
69 |
prompt += f"User: {message}\nAssistant:"
|
70 |
+
|
71 |
+
# Keep track of the full response
|
72 |
+
full_response = ""
|
73 |
+
|
74 |
try:
|
75 |
+
for token_chunk in generate_text_streaming(prompt, max_tokens):
|
76 |
+
# Update the full response and yield incremental changes
|
77 |
+
full_response = token_chunk
|
78 |
+
yield full_response
|
79 |
+
|
80 |
except Exception as e:
|
81 |
print(f"Error during generation: {e}")
|
82 |
yield "An error occurred."
|
|
|
88 |
value="You are a friendly and helpful mental health chatbot.",
|
89 |
label="System message",
|
90 |
),
|
91 |
+
gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max new tokens"),
|
92 |
],
|
93 |
)
|
94 |
|