Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Determine device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_id = "thrishala/mental_health_chatbot" | |
try: | |
# Load model with appropriate settings | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
max_memory={0: "15GiB"} if torch.cuda.is_available() else None, | |
offload_folder="offload", | |
).eval() | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.model_max_length = 4096 # Set to model's actual context length | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
exit() | |
def generate_text_streaming(prompt, max_new_tokens=128): | |
inputs = tokenizer( | |
prompt, | |
return_tensors="pt", | |
truncation=True, | |
max_length=4096 # Match model's context length | |
).to(model.device) | |
generated_tokens = [] | |
with torch.no_grad(): | |
for _ in range(max_new_tokens): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=1, | |
do_sample=False, | |
eos_token_id=tokenizer.eos_token_id, | |
return_dict_in_generate=True | |
) | |
new_token = outputs.sequences[0, -1] | |
generated_tokens.append(new_token) | |
# Update inputs for next iteration | |
inputs = { | |
"input_ids": torch.cat([inputs["input_ids"], new_token.unsqueeze(0).unsqueeze(0)], dim=-1), | |
"attention_mask": torch.cat([inputs["attention_mask"], torch.ones(1, 1, device=model.device)], dim=-1) | |
} | |
# Decode the accumulated tokens | |
current_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
yield current_text # Yield the full text so far | |
if new_token == tokenizer.eos_token_id: | |
break | |
def respond(message, history, system_message, max_tokens): | |
# Build prompt with full history | |
prompt = f"{system_message}\n" | |
for user_msg, bot_msg in history: | |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" | |
prompt += f"User: {message}\nAssistant:" | |
# Keep track of the full response | |
full_response = "" | |
try: | |
for token_chunk in generate_text_streaming(prompt, max_tokens): | |
# Update the full response and yield incremental changes | |
full_response = token_chunk | |
yield full_response | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
yield "An error occurred." | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly and helpful mental health chatbot.", | |
label="System message", | |
), | |
gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max new tokens"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |