blanchon's picture
Init
9e3e526
import base64
import io
import os
import zipfile
from io import BytesIO
from pathlib import Path
from typing import Literal, TypedDict, cast
import gradio as gr
import numpy as np
import requests
from gradio.components.image_editor import EditorValue
from PIL import Image
_PASSWORD = os.environ.get("PASSWORD", None)
if not _PASSWORD:
msg = "PASSWORD is not set"
raise ValueError(msg)
PASSWORD = cast("str", _PASSWORD)
_ENDPOINT = os.environ.get("ENDPOINT", None)
if not _ENDPOINT:
msg = "ENDPOINT is not set"
raise ValueError(msg)
ENDPOINT = cast("str", _ENDPOINT)
# Add constants at the top
THUMBNAIL_MAX_SIZE = 2048
REFERENCE_MAX_SIZE = 1024
REQUEST_TIMEOUT = 300 # 5 minutes
DEFAULT_BRUSH_SIZE = 75
def encode_image_as_base64(image: Image.Image) -> str:
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def make_example(image_path: Path, mask_path: Path | None) -> EditorValue:
background_image = Image.open(image_path)
background_image = background_image.convert("RGB")
background = np.array(background_image)
if mask_path:
mask_image = Image.open(mask_path)
mask_image = mask_image.convert("RGB")
mask = np.array(mask_image)
mask = mask[:, :, 0]
mask = np.where(mask == 255, 0, 255) # noqa: PLR2004
else:
mask = np.zeros_like(background)
mask = mask[:, :, 0]
if background.shape[0] != mask.shape[0] or background.shape[1] != mask.shape[1]:
msg = "Background and mask must have the same shape"
raise ValueError(msg)
layer = np.zeros((background.shape[0], background.shape[1], 4), dtype=np.uint8)
layer[:, :, 3] = mask
composite = np.zeros((background.shape[0], background.shape[1], 4), dtype=np.uint8)
composite[:, :, :3] = background
composite[:, :, 3] = np.where(mask == 255, 0, 255) # noqa: PLR2004
return {
"background": background,
"layers": [layer],
"composite": composite,
}
class InputFurnitureBlendingTypedDict(TypedDict):
return_type: Literal["zipfile", "s3"]
model_type: Literal["schnell", "dev"]
room_image_input: str
bbox: tuple[int, int, int, int]
furniture_reference_image: str
prompt: str
seed: int
num_inference_steps: int
max_dimension: int
margin: int
crop: bool
num_images_per_prompt: int
bucket: str
# Add type hints for the response
class GenerationResponse(TypedDict):
images: list[Image.Image]
error: str | None
def validate_inputs(
image_and_mask: EditorValue | None,
furniture_reference: Image.Image | None,
) -> tuple[Literal[True], None] | tuple[Literal[False], str]:
if not image_and_mask:
return False, "Please upload an image and draw a mask"
image_np = cast("np.ndarray", image_and_mask["background"])
if np.sum(image_np) == 0:
return False, "Please upload an image"
alpha_channel = cast("np.ndarray", image_and_mask["layers"][0])
mask_np = np.where(alpha_channel[:, :, 3] == 0, 0, 255).astype(np.uint8)
if np.sum(mask_np) == 0:
return False, "Please mark the areas you want to remove"
if not furniture_reference:
return False, "Please upload a furniture reference image"
return True, None
def process_images(
image_and_mask: EditorValue,
furniture_reference: Image.Image,
) -> tuple[Image.Image, Image.Image, Image.Image]:
image_np = cast("np.ndarray", image_and_mask["background"])
alpha_channel = cast("np.ndarray", image_and_mask["layers"][0])
mask_np = np.where(alpha_channel[:, :, 3] == 0, 0, 255).astype(np.uint8)
mask_image = Image.fromarray(mask_np).convert("L")
target_image = Image.fromarray(image_np).convert("RGB")
# Resize images
mask_image.thumbnail(
(THUMBNAIL_MAX_SIZE, THUMBNAIL_MAX_SIZE), Image.Resampling.LANCZOS
)
target_image.thumbnail(
(THUMBNAIL_MAX_SIZE, THUMBNAIL_MAX_SIZE), Image.Resampling.LANCZOS
)
furniture_reference.thumbnail(
(REFERENCE_MAX_SIZE, REFERENCE_MAX_SIZE), Image.Resampling.LANCZOS
)
return target_image, mask_image, furniture_reference
def predict(
model_type: Literal["schnell", "dev", "pixart"],
image_and_mask: EditorValue,
furniture_reference: Image.Image | None,
prompt: str = "",
seed: int = 0,
num_inference_steps: int = 28,
max_dimension: int = 512,
margin: int = 128,
crop: bool = True,
num_images_per_prompt: int = 1,
) -> list[Image.Image] | None:
# Validate inputs
is_valid, error_message = validate_inputs(image_and_mask, furniture_reference)
if not is_valid and error_message:
gr.Info(error_message)
return None
if model_type == "pixart":
gr.Info("PixArt is not supported yet")
return None
# Process images
target_image, mask_image, furniture_reference = process_images(
image_and_mask, cast("Image.Image", furniture_reference)
)
bbox = mask_image.getbbox()
if not bbox:
gr.Info("Please mark the areas you want to remove")
return None
# Prepare API request
room_image_input_base64 = "data:image/png;base64," + encode_image_as_base64(
target_image
)
furniture_reference_base64 = "data:image/png;base64," + encode_image_as_base64(
furniture_reference
)
body = InputFurnitureBlendingTypedDict(
return_type="zipfile",
model_type=model_type,
room_image_input=room_image_input_base64,
bbox=bbox,
furniture_reference_image=furniture_reference_base64,
prompt=prompt,
seed=seed,
num_inference_steps=num_inference_steps,
max_dimension=max_dimension,
margin=margin,
crop=crop,
num_images_per_prompt=num_images_per_prompt,
bucket="furniture-blending",
)
try:
response = requests.post(
ENDPOINT,
headers={"accept": "application/json", "Content-Type": "application/json"},
json=body,
timeout=REQUEST_TIMEOUT,
)
response.raise_for_status()
except requests.RequestException as e:
gr.Info(f"API request failed: {e!s}")
return None
# Process response
try:
zip_bytes = io.BytesIO(response.content)
final_image_list: list[Image.Image] = []
with zipfile.ZipFile(zip_bytes, "r") as zip_file:
for filename in zip_file.namelist():
with zip_file.open(filename) as file:
image = Image.open(file).convert("RGB")
final_image_list.append(image)
except (OSError, zipfile.BadZipFile) as e:
gr.Info(f"Failed to process response: {e!s}")
return None
return final_image_list
css = r"""
#col-left {
margin: 0 auto;
max-width: 430px;
}
#col-mid {
margin: 0 auto;
max-width: 430px;
}
#col-right {
margin: 0 auto;
max-width: 430px;
}
#col-showcase {
margin: 0 auto;
max-width: 1100px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("""
<div style="display: flex; justify-content: center; text-align:center; flex-direction: column;">
<h1 style="color: #333;">🪑 Furniture Blending Demo</h1>
<div style="max-width: 800px; margin: 0 auto;">
<p style="font-size: 16px;">Upload an image, draw a mask on the areas you want to remove, and upload a furniture reference image.</p>
<p style="font-size: 16px;">
For the best results, make square masks.
Flux dev give better results than the schnell but is slower.
Object reference should be a single object with white background.
</p>
<p style="font-size: 16px;">
You can edit the object with the prompt.
For example, you can add "red couch" to the prompt to make the couch red.
</p>
<br>
<p style="font-size: 16px;">⚠️ Note that the images are compressed to reduce the workloads of the demo. </p>
</div>
</div>
""")
with gr.Row():
with gr.Column(elem_id="col-left"):
gr.HTML(
r"""
<div style="display: flex; justify-content: start; align-items: center; text-align: center; font-size: 20px">
<div>
🪟 Room image with inpainting mask ⬇️
</div>
</div>
""",
max_height=50,
)
image_and_mask = gr.ImageMask(
label="Image and Mask",
layers=False,
height="full",
width="full",
show_fullscreen_button=False,
sources=["upload"],
show_download_button=False,
interactive=True,
brush=gr.Brush(
default_size=DEFAULT_BRUSH_SIZE,
colors=["#000000"],
color_mode="fixed",
),
transforms=[],
)
gr.Examples(
examples=[
make_example(path, None)
for path in Path("./examples/scenes").glob("*.png")
],
label="Room examples",
examples_per_page=6,
inputs=[image_and_mask],
)
with gr.Column(elem_id="col-mid"):
gr.HTML(
r"""
<div style="display: flex; justify-content: start; align-items: center; text-align: center; font-size: 20px">
<div>
🪑 Furniture reference image ⬇️
</div>
</div>
""",
max_height=50,
)
condition_image = gr.Image(
label="Furniture Reference",
type="pil",
sources=["upload"],
image_mode="RGB",
)
gr.Examples(
examples=list(Path("./examples/objects").glob("*.png")),
label="Furniture examples",
examples_per_page=6,
inputs=[condition_image],
)
with gr.Column(elem_id="col-right"):
gr.HTML(
r"""
<div style="display: flex; justify-content: start; align-items: center; text-align: center; font-size: 20px">
<div>
🔥 Press Run ⬇️
</div>
</div>
""",
max_height=50,
)
results = gr.Gallery(
label="Result",
format="png",
file_types=["image"],
show_label=False,
columns=2,
allow_preview=True,
preview=True,
)
model_type = gr.Radio(
choices=["schnell", "dev", "pixart"],
value="dev",
label="Model Type",
)
run_button = gr.Button("Run")
with gr.Accordion("Advanced Settings", open=False):
prompt = gr.Textbox(
label="Prompt",
value="",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=0,
)
num_images_per_prompt = gr.Slider(
label="Number of images per prompt",
minimum=1,
maximum=10,
step=1,
value=2,
)
crop = gr.Checkbox(
label="Crop",
value=False,
)
margin = gr.Slider(
label="Margin",
minimum=0,
maximum=256,
step=16,
value=128,
)
with gr.Column():
max_dimension = gr.Slider(
label="Max Dimension",
minimum=256,
maximum=1024,
step=128,
value=512,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=4,
maximum=30,
step=2,
value=28,
)
# Change the number of inference steps based on the model type
model_type.change(
fn=lambda x: gr.update(value=4 if x == "schnell" else 28),
inputs=model_type,
outputs=num_inference_steps,
)
# Add loading indicator
with gr.Row():
loading_indicator = gr.HTML(
'<div id="loading" style="display:none;">Processing... Please wait.</div>'
)
# Update click handler to show loading state
run_button.click(
fn=lambda: gr.update(visible=True),
outputs=[loading_indicator],
).then(
fn=predict,
inputs=[
model_type,
image_and_mask,
condition_image,
prompt,
seed,
num_inference_steps,
max_dimension,
margin,
crop,
num_images_per_prompt,
],
outputs=[results],
).then(
fn=lambda: gr.update(visible=False),
outputs=[loading_indicator],
)
if __name__ == "__main__":
demo.launch()