Spaces:
Running
Running
File size: 13,883 Bytes
a134dbf 143c5ef 9e3e526 a134dbf 9e3e526 a134dbf 9e3e526 a134dbf 5f528b8 f41b71e 5f528b8 f41b71e 9e3e526 a134dbf a7d49ca a134dbf 9e3e526 a134dbf 9e3e526 a134dbf a7d49ca 9e3e526 a134dbf 9e3e526 a134dbf 9e3e526 a134dbf 9e3e526 a134dbf 9e3e526 a134dbf 9e3e526 a134dbf 30bd730 a134dbf 9e3e526 a134dbf 30bd730 a134dbf 9e3e526 a134dbf 9e3e526 a7d49ca 5f528b8 a7d49ca 143c5ef a134dbf 30bd730 a134dbf 9e3e526 143c5ef a134dbf 30bd730 a134dbf 9e3e526 a134dbf a7d49ca 4f3468a a134dbf 07c4f11 a134dbf 07c4f11 a134dbf 9e3e526 a134dbf 9e3e526 a134dbf 9e3e526 a134dbf 9e3e526 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import base64
import io
import os
import zipfile
from io import BytesIO
from pathlib import Path
from typing import Literal, TypedDict, cast
import gradio as gr
import numpy as np
import requests
from gradio.components.image_editor import EditorValue
from PIL import Image
_PASSWORD = os.environ.get("PASSWORD", None)
if not _PASSWORD:
msg = "PASSWORD is not set"
raise ValueError(msg)
PASSWORD = cast("str", _PASSWORD)
_ENDPOINT = os.environ.get("ENDPOINT", None)
if not _ENDPOINT:
msg = "ENDPOINT is not set"
raise ValueError(msg)
ENDPOINT = cast("str", _ENDPOINT)
# Add constants at the top
THUMBNAIL_MAX_SIZE = 2048
REFERENCE_MAX_SIZE = 1024
REQUEST_TIMEOUT = 300 # 5 minutes
DEFAULT_BRUSH_SIZE = 75
def encode_image_as_base64(image: Image.Image) -> str:
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def make_example(image_path: Path, mask_path: Path | None) -> EditorValue:
background_image = Image.open(image_path)
background_image = background_image.convert("RGB")
background = np.array(background_image)
if mask_path:
mask_image = Image.open(mask_path)
mask_image = mask_image.convert("RGB")
mask = np.array(mask_image)
mask = mask[:, :, 0]
mask = np.where(mask == 255, 0, 255) # noqa: PLR2004
else:
mask = np.zeros_like(background)
mask = mask[:, :, 0]
if background.shape[0] != mask.shape[0] or background.shape[1] != mask.shape[1]:
msg = "Background and mask must have the same shape"
raise ValueError(msg)
layer = np.zeros((background.shape[0], background.shape[1], 4), dtype=np.uint8)
layer[:, :, 3] = mask
composite = np.zeros((background.shape[0], background.shape[1], 4), dtype=np.uint8)
composite[:, :, :3] = background
composite[:, :, 3] = np.where(mask == 255, 0, 255) # noqa: PLR2004
return {
"background": background,
"layers": [layer],
"composite": composite,
}
class InputFurnitureBlendingTypedDict(TypedDict):
return_type: Literal["zipfile", "s3"]
model_type: Literal["schnell", "dev"]
room_image_input: str
bbox: tuple[int, int, int, int]
furniture_reference_image: str
prompt: str
seed: int
num_inference_steps: int
max_dimension: int
margin: int
crop: bool
num_images_per_prompt: int
bucket: str
# Add type hints for the response
class GenerationResponse(TypedDict):
images: list[Image.Image]
error: str | None
def validate_inputs(
image_and_mask: EditorValue | None,
furniture_reference: Image.Image | None,
) -> tuple[Literal[True], None] | tuple[Literal[False], str]:
if not image_and_mask:
return False, "Please upload an image and draw a mask"
image_np = cast("np.ndarray", image_and_mask["background"])
if np.sum(image_np) == 0:
return False, "Please upload an image"
alpha_channel = cast("np.ndarray", image_and_mask["layers"][0])
mask_np = np.where(alpha_channel[:, :, 3] == 0, 0, 255).astype(np.uint8)
if np.sum(mask_np) == 0:
return False, "Please mark the areas you want to remove"
if not furniture_reference:
return False, "Please upload a furniture reference image"
return True, None
def process_images(
image_and_mask: EditorValue,
furniture_reference: Image.Image,
) -> tuple[Image.Image, Image.Image, Image.Image]:
image_np = cast("np.ndarray", image_and_mask["background"])
alpha_channel = cast("np.ndarray", image_and_mask["layers"][0])
mask_np = np.where(alpha_channel[:, :, 3] == 0, 0, 255).astype(np.uint8)
mask_image = Image.fromarray(mask_np).convert("L")
target_image = Image.fromarray(image_np).convert("RGB")
# Resize images
mask_image.thumbnail(
(THUMBNAIL_MAX_SIZE, THUMBNAIL_MAX_SIZE), Image.Resampling.LANCZOS
)
target_image.thumbnail(
(THUMBNAIL_MAX_SIZE, THUMBNAIL_MAX_SIZE), Image.Resampling.LANCZOS
)
furniture_reference.thumbnail(
(REFERENCE_MAX_SIZE, REFERENCE_MAX_SIZE), Image.Resampling.LANCZOS
)
return target_image, mask_image, furniture_reference
def predict(
model_type: Literal["schnell", "dev", "pixart"],
image_and_mask: EditorValue,
furniture_reference: Image.Image | None,
prompt: str = "",
seed: int = 0,
num_inference_steps: int = 28,
max_dimension: int = 512,
margin: int = 128,
crop: bool = True,
num_images_per_prompt: int = 1,
) -> list[Image.Image] | None:
# Validate inputs
is_valid, error_message = validate_inputs(image_and_mask, furniture_reference)
if not is_valid and error_message:
gr.Info(error_message)
return None
if model_type == "pixart":
gr.Info("PixArt is not supported yet")
return None
# Process images
target_image, mask_image, furniture_reference = process_images(
image_and_mask, cast("Image.Image", furniture_reference)
)
bbox = mask_image.getbbox()
if not bbox:
gr.Info("Please mark the areas you want to remove")
return None
# Prepare API request
room_image_input_base64 = "data:image/png;base64," + encode_image_as_base64(
target_image
)
furniture_reference_base64 = "data:image/png;base64," + encode_image_as_base64(
furniture_reference
)
body = InputFurnitureBlendingTypedDict(
return_type="zipfile",
model_type=model_type,
room_image_input=room_image_input_base64,
bbox=bbox,
furniture_reference_image=furniture_reference_base64,
prompt=prompt,
seed=seed,
num_inference_steps=num_inference_steps,
max_dimension=max_dimension,
margin=margin,
crop=crop,
num_images_per_prompt=num_images_per_prompt,
bucket="furniture-blending",
)
try:
response = requests.post(
ENDPOINT,
headers={"accept": "application/json", "Content-Type": "application/json"},
json=body,
timeout=REQUEST_TIMEOUT,
)
response.raise_for_status()
except requests.RequestException as e:
gr.Info(f"API request failed: {e!s}")
return None
# Process response
try:
zip_bytes = io.BytesIO(response.content)
final_image_list: list[Image.Image] = []
with zipfile.ZipFile(zip_bytes, "r") as zip_file:
for filename in zip_file.namelist():
with zip_file.open(filename) as file:
image = Image.open(file).convert("RGB")
final_image_list.append(image)
except (OSError, zipfile.BadZipFile) as e:
gr.Info(f"Failed to process response: {e!s}")
return None
return final_image_list
css = r"""
#col-left {
margin: 0 auto;
max-width: 430px;
}
#col-mid {
margin: 0 auto;
max-width: 430px;
}
#col-right {
margin: 0 auto;
max-width: 430px;
}
#col-showcase {
margin: 0 auto;
max-width: 1100px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("""
<div style="display: flex; justify-content: center; text-align:center; flex-direction: column;">
<h1 style="color: #333;">🪑 Furniture Blending Demo</h1>
<div style="max-width: 800px; margin: 0 auto;">
<p style="font-size: 16px;">Upload an image, draw a mask on the areas you want to remove, and upload a furniture reference image.</p>
<p style="font-size: 16px;">
For the best results, make square masks.
Flux dev give better results than the schnell but is slower.
Object reference should be a single object with white background.
</p>
<p style="font-size: 16px;">
You can edit the object with the prompt.
For example, you can add "red couch" to the prompt to make the couch red.
</p>
<br>
<p style="font-size: 16px;">⚠️ Note that the images are compressed to reduce the workloads of the demo. </p>
</div>
</div>
""")
with gr.Row():
with gr.Column(elem_id="col-left"):
gr.HTML(
r"""
<div style="display: flex; justify-content: start; align-items: center; text-align: center; font-size: 20px">
<div>
🪟 Room image with inpainting mask ⬇️
</div>
</div>
""",
max_height=50,
)
image_and_mask = gr.ImageMask(
label="Image and Mask",
layers=False,
height="full",
width="full",
show_fullscreen_button=False,
sources=["upload"],
show_download_button=False,
interactive=True,
brush=gr.Brush(
default_size=DEFAULT_BRUSH_SIZE,
colors=["#000000"],
color_mode="fixed",
),
transforms=[],
)
gr.Examples(
examples=[
make_example(path, None)
for path in Path("./examples/scenes").glob("*.png")
],
label="Room examples",
examples_per_page=6,
inputs=[image_and_mask],
)
with gr.Column(elem_id="col-mid"):
gr.HTML(
r"""
<div style="display: flex; justify-content: start; align-items: center; text-align: center; font-size: 20px">
<div>
🪑 Furniture reference image ⬇️
</div>
</div>
""",
max_height=50,
)
condition_image = gr.Image(
label="Furniture Reference",
type="pil",
sources=["upload"],
image_mode="RGB",
)
gr.Examples(
examples=list(Path("./examples/objects").glob("*.png")),
label="Furniture examples",
examples_per_page=6,
inputs=[condition_image],
)
with gr.Column(elem_id="col-right"):
gr.HTML(
r"""
<div style="display: flex; justify-content: start; align-items: center; text-align: center; font-size: 20px">
<div>
🔥 Press Run ⬇️
</div>
</div>
""",
max_height=50,
)
results = gr.Gallery(
label="Result",
format="png",
file_types=["image"],
show_label=False,
columns=2,
allow_preview=True,
preview=True,
)
model_type = gr.Radio(
choices=["schnell", "dev", "pixart"],
value="dev",
label="Model Type",
)
run_button = gr.Button("Run")
with gr.Accordion("Advanced Settings", open=False):
prompt = gr.Textbox(
label="Prompt",
value="",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=0,
)
num_images_per_prompt = gr.Slider(
label="Number of images per prompt",
minimum=1,
maximum=10,
step=1,
value=2,
)
crop = gr.Checkbox(
label="Crop",
value=False,
)
margin = gr.Slider(
label="Margin",
minimum=0,
maximum=256,
step=16,
value=128,
)
with gr.Column():
max_dimension = gr.Slider(
label="Max Dimension",
minimum=256,
maximum=1024,
step=128,
value=512,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=4,
maximum=30,
step=2,
value=28,
)
# Change the number of inference steps based on the model type
model_type.change(
fn=lambda x: gr.update(value=4 if x == "schnell" else 28),
inputs=model_type,
outputs=num_inference_steps,
)
# Add loading indicator
with gr.Row():
loading_indicator = gr.HTML(
'<div id="loading" style="display:none;">Processing... Please wait.</div>'
)
# Update click handler to show loading state
run_button.click(
fn=lambda: gr.update(visible=True),
outputs=[loading_indicator],
).then(
fn=predict,
inputs=[
model_type,
image_and_mask,
condition_image,
prompt,
seed,
num_inference_steps,
max_dimension,
margin,
crop,
num_images_per_prompt,
],
outputs=[results],
).then(
fn=lambda: gr.update(visible=False),
outputs=[loading_indicator],
)
if __name__ == "__main__":
demo.launch()
|