Spaces:
Build error
Build error
# -------------------------------------------------------- | |
# Swin Transformer | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Ze Liu | |
# -------------------------------------------------------- | |
import io | |
import os | |
import time | |
import torch.distributed as dist | |
import torch.utils.data as data | |
from PIL import Image | |
from .zipreader import is_zip_path, ZipReader | |
def has_file_allowed_extension(filename, extensions): | |
"""Checks if a file is an allowed extension. | |
Args: | |
filename (string): path to a file | |
Returns: | |
bool: True if the filename ends with a known image extension | |
""" | |
filename_lower = filename.lower() | |
return any(filename_lower.endswith(ext) for ext in extensions) | |
def find_classes(dir): | |
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] | |
classes.sort() | |
class_to_idx = {classes[i]: i for i in range(len(classes))} | |
return classes, class_to_idx | |
def make_dataset(dir, class_to_idx, extensions): | |
images = [] | |
dir = os.path.expanduser(dir) | |
for target in sorted(os.listdir(dir)): | |
d = os.path.join(dir, target) | |
if not os.path.isdir(d): | |
continue | |
for root, _, fnames in sorted(os.walk(d)): | |
for fname in sorted(fnames): | |
if has_file_allowed_extension(fname, extensions): | |
path = os.path.join(root, fname) | |
item = (path, class_to_idx[target]) | |
images.append(item) | |
return images | |
def make_dataset_with_ann(ann_file, img_prefix, extensions): | |
images = [] | |
with open(ann_file, "r") as f: | |
contents = f.readlines() | |
for line_str in contents: | |
path_contents = [c for c in line_str.split('\t')] | |
im_file_name = path_contents[0] | |
class_index = int(path_contents[1]) | |
assert str.lower(os.path.splitext(im_file_name)[-1]) in extensions | |
item = (os.path.join(img_prefix, im_file_name), class_index) | |
images.append(item) | |
return images | |
class DatasetFolder(data.Dataset): | |
"""A generic data loader where the samples are arranged in this way: :: | |
root/class_x/xxx.ext | |
root/class_x/xxy.ext | |
root/class_x/xxz.ext | |
root/class_y/123.ext | |
root/class_y/nsdf3.ext | |
root/class_y/asd932_.ext | |
Args: | |
root (string): Root directory path. | |
loader (callable): A function to load a sample given its path. | |
extensions (list[string]): A list of allowed extensions. | |
transform (callable, optional): A function/transform that takes in | |
a sample and returns a transformed version. | |
E.g, ``transforms.RandomCrop`` for images. | |
target_transform (callable, optional): A function/transform that takes | |
in the target and transforms it. | |
Attributes: | |
samples (list): List of (sample path, class_index) tuples | |
""" | |
def __init__(self, root, loader, extensions, ann_file='', img_prefix='', transform=None, target_transform=None, | |
cache_mode="no"): | |
# image folder mode | |
if ann_file == '': | |
_, class_to_idx = find_classes(root) | |
samples = make_dataset(root, class_to_idx, extensions) | |
# zip mode | |
else: | |
samples = make_dataset_with_ann(os.path.join(root, ann_file), | |
os.path.join(root, img_prefix), | |
extensions) | |
if len(samples) == 0: | |
raise (RuntimeError("Found 0 files in subfolders of: " + root + "\n" + | |
"Supported extensions are: " + ",".join(extensions))) | |
self.root = root | |
self.loader = loader | |
self.extensions = extensions | |
self.samples = samples | |
self.labels = [y_1k for _, y_1k in samples] | |
self.classes = list(set(self.labels)) | |
self.transform = transform | |
self.target_transform = target_transform | |
self.cache_mode = cache_mode | |
if self.cache_mode != "no": | |
self.init_cache() | |
def init_cache(self): | |
assert self.cache_mode in ["part", "full"] | |
n_sample = len(self.samples) | |
global_rank = dist.get_rank() | |
world_size = dist.get_world_size() | |
samples_bytes = [None for _ in range(n_sample)] | |
start_time = time.time() | |
for index in range(n_sample): | |
if index % (n_sample // 10) == 0: | |
t = time.time() - start_time | |
print(f'global_rank {dist.get_rank()} cached {index}/{n_sample} takes {t:.2f}s per block') | |
start_time = time.time() | |
path, target = self.samples[index] | |
if self.cache_mode == "full": | |
samples_bytes[index] = (ZipReader.read(path), target) | |
elif self.cache_mode == "part" and index % world_size == global_rank: | |
samples_bytes[index] = (ZipReader.read(path), target) | |
else: | |
samples_bytes[index] = (path, target) | |
self.samples = samples_bytes | |
def __getitem__(self, index): | |
""" | |
Args: | |
index (int): Index | |
Returns: | |
tuple: (sample, target) where target is class_index of the target class. | |
""" | |
path, target = self.samples[index] | |
sample = self.loader(path) | |
if self.transform is not None: | |
sample = self.transform(sample) | |
if self.target_transform is not None: | |
target = self.target_transform(target) | |
return sample, target | |
def __len__(self): | |
return len(self.samples) | |
def __repr__(self): | |
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' | |
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) | |
fmt_str += ' Root Location: {}\n'.format(self.root) | |
tmp = ' Transforms (if any): ' | |
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) | |
tmp = ' Target Transforms (if any): ' | |
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) | |
return fmt_str | |
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif'] | |
def pil_loader(path): | |
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) | |
if isinstance(path, bytes): | |
img = Image.open(io.BytesIO(path)) | |
elif is_zip_path(path): | |
data = ZipReader.read(path) | |
img = Image.open(io.BytesIO(data)) | |
else: | |
with open(path, 'rb') as f: | |
img = Image.open(f) | |
return img.convert('RGB') | |
def accimage_loader(path): | |
import accimage | |
try: | |
return accimage.Image(path) | |
except IOError: | |
# Potentially a decoding problem, fall back to PIL.Image | |
return pil_loader(path) | |
def default_img_loader(path): | |
from torchvision import get_image_backend | |
if get_image_backend() == 'accimage': | |
return accimage_loader(path) | |
else: | |
return pil_loader(path) | |
class CachedImageFolder(DatasetFolder): | |
"""A generic data loader where the images are arranged in this way: :: | |
root/dog/xxx.png | |
root/dog/xxy.png | |
root/dog/xxz.png | |
root/cat/123.png | |
root/cat/nsdf3.png | |
root/cat/asd932_.png | |
Args: | |
root (string): Root directory path. | |
transform (callable, optional): A function/transform that takes in an PIL image | |
and returns a transformed version. E.g, ``transforms.RandomCrop`` | |
target_transform (callable, optional): A function/transform that takes in the | |
target and transforms it. | |
loader (callable, optional): A function to load an image given its path. | |
Attributes: | |
imgs (list): List of (image path, class_index) tuples | |
""" | |
def __init__(self, root, ann_file='', img_prefix='', transform=None, target_transform=None, | |
loader=default_img_loader, cache_mode="no"): | |
super(CachedImageFolder, self).__init__(root, loader, IMG_EXTENSIONS, | |
ann_file=ann_file, img_prefix=img_prefix, | |
transform=transform, target_transform=target_transform, | |
cache_mode=cache_mode) | |
self.imgs = self.samples | |
def __getitem__(self, index): | |
""" | |
Args: | |
index (int): Index | |
Returns: | |
tuple: (image, target) where target is class_index of the target class. | |
""" | |
path, target = self.samples[index] | |
image = self.loader(path) | |
if self.transform is not None: | |
img = self.transform(image) | |
else: | |
img = image | |
if self.target_transform is not None: | |
target = self.target_transform(target) | |
return img, target | |