metaformer / data /cached_image_folder.py
diaoqishuai
first commit
4a3ad95
raw
history blame
8.99 kB
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
import io
import os
import time
import torch.distributed as dist
import torch.utils.data as data
from PIL import Image
from .zipreader import is_zip_path, ZipReader
def has_file_allowed_extension(filename, extensions):
"""Checks if a file is an allowed extension.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension
"""
filename_lower = filename.lower()
return any(filename_lower.endswith(ext) for ext in extensions)
def find_classes(dir):
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir, class_to_idx, extensions):
images = []
dir = os.path.expanduser(dir)
for target in sorted(os.listdir(dir)):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in sorted(fnames):
if has_file_allowed_extension(fname, extensions):
path = os.path.join(root, fname)
item = (path, class_to_idx[target])
images.append(item)
return images
def make_dataset_with_ann(ann_file, img_prefix, extensions):
images = []
with open(ann_file, "r") as f:
contents = f.readlines()
for line_str in contents:
path_contents = [c for c in line_str.split('\t')]
im_file_name = path_contents[0]
class_index = int(path_contents[1])
assert str.lower(os.path.splitext(im_file_name)[-1]) in extensions
item = (os.path.join(img_prefix, im_file_name), class_index)
images.append(item)
return images
class DatasetFolder(data.Dataset):
"""A generic data loader where the samples are arranged in this way: ::
root/class_x/xxx.ext
root/class_x/xxy.ext
root/class_x/xxz.ext
root/class_y/123.ext
root/class_y/nsdf3.ext
root/class_y/asd932_.ext
Args:
root (string): Root directory path.
loader (callable): A function to load a sample given its path.
extensions (list[string]): A list of allowed extensions.
transform (callable, optional): A function/transform that takes in
a sample and returns a transformed version.
E.g, ``transforms.RandomCrop`` for images.
target_transform (callable, optional): A function/transform that takes
in the target and transforms it.
Attributes:
samples (list): List of (sample path, class_index) tuples
"""
def __init__(self, root, loader, extensions, ann_file='', img_prefix='', transform=None, target_transform=None,
cache_mode="no"):
# image folder mode
if ann_file == '':
_, class_to_idx = find_classes(root)
samples = make_dataset(root, class_to_idx, extensions)
# zip mode
else:
samples = make_dataset_with_ann(os.path.join(root, ann_file),
os.path.join(root, img_prefix),
extensions)
if len(samples) == 0:
raise (RuntimeError("Found 0 files in subfolders of: " + root + "\n" +
"Supported extensions are: " + ",".join(extensions)))
self.root = root
self.loader = loader
self.extensions = extensions
self.samples = samples
self.labels = [y_1k for _, y_1k in samples]
self.classes = list(set(self.labels))
self.transform = transform
self.target_transform = target_transform
self.cache_mode = cache_mode
if self.cache_mode != "no":
self.init_cache()
def init_cache(self):
assert self.cache_mode in ["part", "full"]
n_sample = len(self.samples)
global_rank = dist.get_rank()
world_size = dist.get_world_size()
samples_bytes = [None for _ in range(n_sample)]
start_time = time.time()
for index in range(n_sample):
if index % (n_sample // 10) == 0:
t = time.time() - start_time
print(f'global_rank {dist.get_rank()} cached {index}/{n_sample} takes {t:.2f}s per block')
start_time = time.time()
path, target = self.samples[index]
if self.cache_mode == "full":
samples_bytes[index] = (ZipReader.read(path), target)
elif self.cache_mode == "part" and index % world_size == global_rank:
samples_bytes[index] = (ZipReader.read(path), target)
else:
samples_bytes[index] = (path, target)
self.samples = samples_bytes
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
def __len__(self):
return len(self.samples)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
if isinstance(path, bytes):
img = Image.open(io.BytesIO(path))
elif is_zip_path(path):
data = ZipReader.read(path)
img = Image.open(io.BytesIO(data))
else:
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_img_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class CachedImageFolder(DatasetFolder):
"""A generic data loader where the images are arranged in this way: ::
root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
Args:
root (string): Root directory path.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
Attributes:
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self, root, ann_file='', img_prefix='', transform=None, target_transform=None,
loader=default_img_loader, cache_mode="no"):
super(CachedImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
ann_file=ann_file, img_prefix=img_prefix,
transform=transform, target_transform=target_transform,
cache_mode=cache_mode)
self.imgs = self.samples
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
image = self.loader(path)
if self.transform is not None:
img = self.transform(image)
else:
img = image
if self.target_transform is not None:
target = self.target_transform(target)
return img, target