File size: 8,988 Bytes
4a3ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------

import io
import os
import time
import torch.distributed as dist
import torch.utils.data as data
from PIL import Image

from .zipreader import is_zip_path, ZipReader


def has_file_allowed_extension(filename, extensions):
    """Checks if a file is an allowed extension.
    Args:
        filename (string): path to a file
    Returns:
        bool: True if the filename ends with a known image extension
    """
    filename_lower = filename.lower()
    return any(filename_lower.endswith(ext) for ext in extensions)


def find_classes(dir):
    classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx


def make_dataset(dir, class_to_idx, extensions):
    images = []
    dir = os.path.expanduser(dir)
    for target in sorted(os.listdir(dir)):
        d = os.path.join(dir, target)
        if not os.path.isdir(d):
            continue

        for root, _, fnames in sorted(os.walk(d)):
            for fname in sorted(fnames):
                if has_file_allowed_extension(fname, extensions):
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)

    return images


def make_dataset_with_ann(ann_file, img_prefix, extensions):
    images = []
    with open(ann_file, "r") as f:
        contents = f.readlines()
        for line_str in contents:
            path_contents = [c for c in line_str.split('\t')]
            im_file_name = path_contents[0]
            class_index = int(path_contents[1])

            assert str.lower(os.path.splitext(im_file_name)[-1]) in extensions
            item = (os.path.join(img_prefix, im_file_name), class_index)

            images.append(item)

    return images


class DatasetFolder(data.Dataset):
    """A generic data loader where the samples are arranged in this way: ::
        root/class_x/xxx.ext
        root/class_x/xxy.ext
        root/class_x/xxz.ext
        root/class_y/123.ext
        root/class_y/nsdf3.ext
        root/class_y/asd932_.ext
    Args:
        root (string): Root directory path.
        loader (callable): A function to load a sample given its path.
        extensions (list[string]): A list of allowed extensions.
        transform (callable, optional): A function/transform that takes in
            a sample and returns a transformed version.
            E.g, ``transforms.RandomCrop`` for images.
        target_transform (callable, optional): A function/transform that takes
            in the target and transforms it.
     Attributes:
        samples (list): List of (sample path, class_index) tuples
    """

    def __init__(self, root, loader, extensions, ann_file='', img_prefix='', transform=None, target_transform=None,
                 cache_mode="no"):
        # image folder mode
        if ann_file == '':
            _, class_to_idx = find_classes(root)
            samples = make_dataset(root, class_to_idx, extensions)
        # zip mode
        else:
            samples = make_dataset_with_ann(os.path.join(root, ann_file),
                                            os.path.join(root, img_prefix),
                                            extensions)

        if len(samples) == 0:
            raise (RuntimeError("Found 0 files in subfolders of: " + root + "\n" +
                                "Supported extensions are: " + ",".join(extensions)))

        self.root = root
        self.loader = loader
        self.extensions = extensions

        self.samples = samples
        self.labels = [y_1k for _, y_1k in samples]
        self.classes = list(set(self.labels))

        self.transform = transform
        self.target_transform = target_transform

        self.cache_mode = cache_mode
        if self.cache_mode != "no":
            self.init_cache()

    def init_cache(self):
        assert self.cache_mode in ["part", "full"]
        n_sample = len(self.samples)
        global_rank = dist.get_rank()
        world_size = dist.get_world_size()

        samples_bytes = [None for _ in range(n_sample)]
        start_time = time.time()
        for index in range(n_sample):
            if index % (n_sample // 10) == 0:
                t = time.time() - start_time
                print(f'global_rank {dist.get_rank()} cached {index}/{n_sample} takes {t:.2f}s per block')
                start_time = time.time()
            path, target = self.samples[index]
            if self.cache_mode == "full":
                samples_bytes[index] = (ZipReader.read(path), target)
            elif self.cache_mode == "part" and index % world_size == global_rank:
                samples_bytes[index] = (ZipReader.read(path), target)
            else:
                samples_bytes[index] = (path, target)
        self.samples = samples_bytes

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (sample, target) where target is class_index of the target class.
        """
        path, target = self.samples[index]
        sample = self.loader(path)
        if self.transform is not None:
            sample = self.transform(sample)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return sample, target

    def __len__(self):
        return len(self.samples)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str


IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']


def pil_loader(path):
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    if isinstance(path, bytes):
        img = Image.open(io.BytesIO(path))
    elif is_zip_path(path):
        data = ZipReader.read(path)
        img = Image.open(io.BytesIO(data))
    else:
        with open(path, 'rb') as f:
            img = Image.open(f)
    return img.convert('RGB')


def accimage_loader(path):
    import accimage
    try:
        return accimage.Image(path)
    except IOError:
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)


def default_img_loader(path):
    from torchvision import get_image_backend
    if get_image_backend() == 'accimage':
        return accimage_loader(path)
    else:
        return pil_loader(path)


class CachedImageFolder(DatasetFolder):
    """A generic data loader where the images are arranged in this way: ::
        root/dog/xxx.png
        root/dog/xxy.png
        root/dog/xxz.png
        root/cat/123.png
        root/cat/nsdf3.png
        root/cat/asd932_.png
    Args:
        root (string): Root directory path.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.
     Attributes:
        imgs (list): List of (image path, class_index) tuples
    """

    def __init__(self, root, ann_file='', img_prefix='', transform=None, target_transform=None,
                 loader=default_img_loader, cache_mode="no"):
        super(CachedImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
                                                ann_file=ann_file, img_prefix=img_prefix,
                                                transform=transform, target_transform=target_transform,
                                                cache_mode=cache_mode)
        self.imgs = self.samples

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (image, target) where target is class_index of the target class.
        """
        path, target = self.samples[index]
        image = self.loader(path)
        if self.transform is not None:
            img = self.transform(image)
        else:
            img = image
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target