File size: 13,481 Bytes
2bc451d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f65192
2bc451d
 
 
 
 
 
 
 
 
 
3f65192
2bc451d
 
3f65192
2bc451d
 
 
 
fdb6f4b
2bc451d
 
 
 
 
 
 
 
 
 
 
 
 
3f65192
2bc451d
 
 
3f65192
 
fdb6f4b
c82f030
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import json
from shapely.geometry import Polygon, Point
from shapely.ops import unary_union
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon as MplPolygon
import numpy as np
import pandas as pd


def add_extreme_coordinates(polygon_data):
    polygon_coords = np.array(polygon_data["geometry"]["coordinates"][0])

    polygon_data["geometry"]["max_lat"] = max(polygon_coords[:, 1])
    polygon_data["geometry"]["min_lat"] = min(polygon_coords[:, 1])
    polygon_data["geometry"]["max_lon"] = max(polygon_coords[:, 0])
    polygon_data["geometry"]["min_lon"] = min(polygon_coords[:, 0])


def turn_into_dataframe(data):
    data_list = data["features"]

    for i in range(len(data_list)):
        add_extreme_coordinates(data_list[i])

    df = pd.DataFrame(data_list).drop(columns="type")

    dict_cols = ["properties", "geometry"]
    for dict_col in dict_cols:
        dict_df = pd.json_normalize(df[dict_col])
        # Merge the new columns back into the original DataFrame
        df = df.drop(columns=[dict_col]).join(dict_df)
    df["coordinates"] = df["coordinates"].apply(lambda x: x[0])
    df["polygon"] = df["coordinates"].apply(lambda x: Polygon(x))

    df = df.drop(columns=["type"])
    return df

# Function to plot a polygon
def plot_polygon(ax, polygon, color, label="label"):
    if not polygon.is_empty:
        x, y = polygon.exterior.xy
        ax.fill(x, y, color=color, alpha=0.5, label=label)


def plot_polygons(list_polygons, first_one_different=False, dpi=150):
    # Plot the polygons and their intersection
    plt.figure(dpi=dpi)
    fig, ax = plt.subplots()

    if first_one_different:
        plot_polygon(ax, list_polygons[0], "red", f"polygon {0}")
        for i, polygon in enumerate(list_polygons[1:]):
            plot_polygon(ax, polygon, "blue", f"polygon {i}")
    else:
        for i, polygon in enumerate(list_polygons):
            plot_polygon(ax, polygon, "blue", f"polygon {i}")

    # Plot the intersection
    # plot_polygon(ax, intersection, 'red', 'Intersection')

    # Add legend
    # ax.legend()

    # Set axis limits
    ax.set_aspect("equal")

    # Set title
    ax.set_title("Polygons and their Intersection")
    plt.ylabel("lat")
    plt.xlabel("lon")

    plt.show()


def plot_polygons_with_colors(list_polygons, list_colors, dpi=150):
    # Plot the polygons and their intersection
    plt.figure(dpi=dpi)
    fig, ax = plt.subplots()

    for polygon, color in zip(list_polygons, list_colors):
        plot_polygon(ax, polygon, color)

    # Set axis limits
    ax.set_aspect("equal")

    # Set title
    ax.set_title("Polygons and their Intersection")
    plt.ylabel("lat")
    plt.xlabel("lon")

    plt.show()


def plot_polygons_from_df(df, dpi=150):
    list_polygons = []
    for index, row in df.iterrows():
        list_polygons.append(row["polygon"])
    plot_polygons(list_polygons=list_polygons, dpi=dpi)


def map_color(id):
    return "blue"


def plot_polygons_from_df_with_color(df, dpi=150):

    df["plot_colors"] = df["id"].apply(map_color)
    list_polygons = []
    list_colors = []
    for index, row in df.iterrows():
        list_polygons.append(row["polygon"])
        list_colors.append(row["plot_colors"])
    plot_polygons_with_colors(
        list_polygons=list_polygons, list_colors=list_colors, dpi=dpi
    )

def intersection(polygon, polygon_comparison):
    return polygon.intersection(polygon_comparison)


def intersection_area(polygon, polygon_comparison):
    return intersection(polygon, polygon_comparison).area


def intersection_area_ratio(polygon, polygon_comparison):
    return intersection_area(polygon, polygon_comparison) / polygon.area

def containsPoint(polygonB, polygon):
    coordinatesB = get_coordinates(polygonB)
    for coord in coordinatesB:
        coord = Point(coord)
        if polygon.contains(coord):
            return True
        else:
            return False

def get_coordinates(polygon):
    coordinates = polygon.exterior.coords
    coordinates = [list(pair) for pair in coordinates]
    return coordinates

def mark_id_to_be_dropped(df, id_string):
    df.loc[df['id']== id_string , 'to_drop'] = True

def mark_id_to_be_merged(df, id_string):
    df.loc[df['id']== id_string , 'to_merge'] = True
    
def calc_overlapping_subset(df_input, index):
    max_lat = df_input.iloc[index]['max_lat']
    min_lat = df_input.iloc[index]['min_lat']
    max_lon = df_input.iloc[index]['max_lon']
    min_lon = df_input.iloc[index]['min_lon']
    relevant_subset = df_input.loc[( (( ((max_lat < df_input['max_lat']) & (max_lat > df_input['min_lat'])) | \
                                    ((min_lat < df_input['max_lat']) & (min_lat > df_input['min_lat'])) )| \
                                    ( ((df_input['max_lat'] < max_lat) & (df_input['max_lat'] > min_lat)) | \
                                    ((df_input['min_lat'] > min_lat ) & ( df_input['min_lat'] < max_lat)) ) )  & \
                                    (( ( ((max_lon < df_input['max_lon']) & (max_lon > df_input['min_lon'])) | \
                                    ((min_lon < df_input['max_lon']) & (min_lon > df_input['min_lon'])) ) ) |
                                    ( ((df_input['max_lon'] < max_lon ) & (df_input['max_lon'] > min_lon)) | \
                                    ((df_input['min_lon'] > min_lon) & (df_input['min_lon'] < max_lon)) ) ) )]
    return relevant_subset

def remove_contained_poylgons(df_input):
    df_result = df_input.copy()

    for i in range (len(df_result)):
        
        polygonA = df_input.iloc[i]['polygon']

        #relevant_subset = df_result[df_result['polygon'].apply(lambda polygonB: containsPoint(polygonA, polygonB))]
        #relevant_subset = relevant_subset[relevant_subset['id'] != df_input.iloc[i]['id']]
        relevant_subset = calc_overlapping_subset(df_input = df_result, index = i)

        # Experiment with this parameter to find the best threshold
        # It certainly has to be smaller than 0.9
        threshold = 0.85
        for j in range(len(relevant_subset)):
            ratio_current_choice = intersection_area_ratio(polygon = polygonA, polygon_comparison = relevant_subset.iloc[j]['polygon'])
            ratio_alternative_choice = intersection_area_ratio(polygon = relevant_subset.iloc[j]['polygon'], polygon_comparison= polygonA)
            if  (ratio_current_choice > threshold) or (ratio_alternative_choice > threshold): # or ratio_alternative_choice > threashold:
                if polygonA.area >  relevant_subset.iloc[j]['polygon'].area:
                    mark_id_to_be_dropped(df=df_result, id_string = relevant_subset.iloc[j]['id'])               
                else:
                    mark_id_to_be_dropped(df=df_result, id_string = df_input.iloc[i]['id'])  

    #remove all polygons that had a marked id
    df_result = df_result.loc[df_result["to_drop"] == False]
    return df_result

def merge(df_input, polygon_index, merge_subset):
    for j in range(len(merge_subset)):
        #merge merged_polygon with j-th polygon in merge_subset
        #delete j_th polygon in merge_subset from df_input
        merged_polygon = df_input.iloc[polygon_index]
        merged_polygon_id = df_input.iloc[polygon_index]['id']
        merged_polygon_index = merged_polygon.index

        #change by merge --> polygon, coordinates, min/max long lat, score (use max or min or avg)
        tmp = merged_polygon['polygon'].union(merge_subset.iloc[j]['polygon'])
        merged_coordinates = list(tmp.exterior.coords)
        merged_polygon = Polygon(merged_coordinates) #new polygon

        coordinates = [list(tup) for tup in merged_coordinates] #new coordinates
        #updating min/max long/lat
        min_lon = min([point[0] for point in coordinates])
        max_lon = max([point[0] for point in coordinates])
        min_lat = min([point[1] for point in coordinates])
        max_lat = max([point[1] for point in coordinates])
        polygon_score = merge_subset.iloc[j]['Confidence_score']

        #updating merged polygon
        df_input.loc[df_input['id'] == merged_polygon_id,'polygon'] = merged_polygon
        df_input.loc[df_input['id'] == merged_polygon_id,'min_lon'] = min_lon
        df_input.loc[df_input['id'] == merged_polygon_id,'max_lon'] = max_lon
        df_input.loc[df_input['id'] == merged_polygon_id,'min_lat'] = min_lat
        df_input.loc[df_input['id'] == merged_polygon_id,'max_lat'] = max_lat
        df_input.loc[df_input['id'] == merged_polygon_id,'Confidence_score'] = (df_input.iloc[polygon_index]['Confidence_score'] + polygon_score)/2
        df_input.loc[df_input['id'] == merged_polygon_id, 'coordinates'] = df_input.loc[df_input['id'] == merged_polygon_id, 'polygon'].apply(get_coordinates)
        df_input = df_input.loc[df_input['id'] != merge_subset.iloc[j]['id']]
    return df_input


def merge_overlapping(df_input):
    # Experiment with this parameter to get the best results
    threshold = 0.40
    #df_result = df_input.copy()

    for i in range(len(df_input)):
        polygon = df_input.iloc[i]['polygon']
        relevant_subset = calc_overlapping_subset(df_input=df_input, index=i)
        toBeMerged = False
        for j in range(len(relevant_subset)):
            ratio_current_choice = intersection_area_ratio(polygon = polygon, polygon_comparison = relevant_subset.iloc[j]['polygon'])
            ratio_alternative_choice = intersection_area_ratio(polygon = relevant_subset.iloc[j]['polygon'], polygon_comparison= polygon)
            if  (ratio_current_choice > threshold) or (ratio_alternative_choice > threshold):
                toBeMerged = True
                mark_id_to_be_merged(df=relevant_subset, id_string = relevant_subset.iloc[j]['id'])         
        
        if toBeMerged:
            # deleting is handled in this funciton as well
            df_input = merge(df_input=df_input, polygon_index=i, merge_subset=relevant_subset[relevant_subset['to_merge']==True])
            return True, df_input
    
    return False, df_input
    

def process(list_df):
    df_res = pd.concat(list_df)
    df_res = remove_contained_poylgons(df_input= df_res)
    i = 0
    merged, df_res = merge_overlapping(df_input=df_res)
    while(merged):
        i+=1
        if i%100 == 0:
            print(i)
        merged, df_res = merge_overlapping(df_input=df_res)
    return df_res


def combine_different_tile_size(df_smaller, df_bigger):

    df_result = df_bigger.copy()

    for i in range(len(df_smaller)):
        max_lat = df_smaller.iloc[i]["max_lat"]
        min_lat = df_smaller.iloc[i]["min_lat"]
        max_lon = df_smaller.iloc[i]["max_lon"]
        min_lon = df_smaller.iloc[i]["min_lon"]

        polygon = df_smaller.iloc[i]["polygon"]

        relevant_subset = df_bigger.loc[
            (
                ((max_lat < df_bigger["max_lat"]) & (max_lat > df_bigger["min_lat"]))
                | ((min_lat < df_bigger["max_lat"]) & (min_lat > df_bigger["min_lat"]))
            )
            & (
                ((max_lon < df_bigger["max_lon"]) & (max_lon > df_bigger["min_lon"]))
                | ((min_lon < df_bigger["max_lon"]) & (min_lon > df_bigger["min_lon"]))
            )
        ]

        list_polygons = [polygon]

        for index, row in relevant_subset.iterrows():
            list_polygons.append(row["polygon"])

        add_polygon = True
        threashold = 0.15
        for comparison_polygon in list_polygons[1:]:
            ratio = intersection_area_ratio(polygon, comparison_polygon)
            if ratio > threashold:
                add_polygon = False

        if add_polygon:
            # df_result = pd.concat([df_result, df_result.iloc[[i]]], axis= 1, ignore_index=True)#df_result.append(df_result.iloc[i], ignore_index=True)
            df_result = pd.concat(
                [df_result, df_smaller.iloc[[i]]], axis=0, join="outer"
            )  #

    return df_result


def clean(df, score_threashold=0.5):
    df = df.loc[df["score"] > score_threashold]
    return df

def row_to_feature(row):
    feature = {
        "id": row["id"],
        "type": "Feature",
        "properties": {"Confidence_score": row["Confidence_score"]},
        "geometry": {"type": "Polygon", "coordinates": [row["coordinates"]]},
    }
    return feature


def export_df_as_geojson(df, filename):
    features = [row_to_feature(row) for idx, row in df.iterrows()]

    feature_collection = {
        "type": "FeatureCollection",
        "crs": {"type": "name", "properties": {"name": "urn:ogc:def:crs:EPSG::32720"}},
        "features": features,
    }

    output_geojson = json.dumps(feature_collection)

    with open(f"{filename}", "w") as f:
        f.write(output_geojson)

    print(f"GeoJSON data exported to '{filename}' file.")

def convert_id_to_string(prefix, x):
    return prefix + str(x)

def postprocess(prediction_geojson_path, store_path):
    with open(prediction_geojson_path,"r",) as file:
        prediction_data = json.load(file)

    df = turn_into_dataframe(prediction_data)

    df["id"] = df.index

    df['Confidence_score'] = df['Confidence_score'].astype(float)

    df["id"] = df["id"].apply(lambda x: convert_id_to_string("df_", x))

    df["to_drop"] = False
    df["to_merge"] = False
    print(f"Number of polygons before postprocessing: {len(df)}")

    df_res = process([df])

    print(f"Number of polygons after postprocessing: {len(df_res)}")

    export_df_as_geojson(df=df_res, filename=store_path)

    return df_res