File size: 13,481 Bytes
2bc451d 3f65192 2bc451d 3f65192 2bc451d 3f65192 2bc451d fdb6f4b 2bc451d 3f65192 2bc451d 3f65192 fdb6f4b c82f030 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import json
from shapely.geometry import Polygon, Point
from shapely.ops import unary_union
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon as MplPolygon
import numpy as np
import pandas as pd
def add_extreme_coordinates(polygon_data):
polygon_coords = np.array(polygon_data["geometry"]["coordinates"][0])
polygon_data["geometry"]["max_lat"] = max(polygon_coords[:, 1])
polygon_data["geometry"]["min_lat"] = min(polygon_coords[:, 1])
polygon_data["geometry"]["max_lon"] = max(polygon_coords[:, 0])
polygon_data["geometry"]["min_lon"] = min(polygon_coords[:, 0])
def turn_into_dataframe(data):
data_list = data["features"]
for i in range(len(data_list)):
add_extreme_coordinates(data_list[i])
df = pd.DataFrame(data_list).drop(columns="type")
dict_cols = ["properties", "geometry"]
for dict_col in dict_cols:
dict_df = pd.json_normalize(df[dict_col])
# Merge the new columns back into the original DataFrame
df = df.drop(columns=[dict_col]).join(dict_df)
df["coordinates"] = df["coordinates"].apply(lambda x: x[0])
df["polygon"] = df["coordinates"].apply(lambda x: Polygon(x))
df = df.drop(columns=["type"])
return df
# Function to plot a polygon
def plot_polygon(ax, polygon, color, label="label"):
if not polygon.is_empty:
x, y = polygon.exterior.xy
ax.fill(x, y, color=color, alpha=0.5, label=label)
def plot_polygons(list_polygons, first_one_different=False, dpi=150):
# Plot the polygons and their intersection
plt.figure(dpi=dpi)
fig, ax = plt.subplots()
if first_one_different:
plot_polygon(ax, list_polygons[0], "red", f"polygon {0}")
for i, polygon in enumerate(list_polygons[1:]):
plot_polygon(ax, polygon, "blue", f"polygon {i}")
else:
for i, polygon in enumerate(list_polygons):
plot_polygon(ax, polygon, "blue", f"polygon {i}")
# Plot the intersection
# plot_polygon(ax, intersection, 'red', 'Intersection')
# Add legend
# ax.legend()
# Set axis limits
ax.set_aspect("equal")
# Set title
ax.set_title("Polygons and their Intersection")
plt.ylabel("lat")
plt.xlabel("lon")
plt.show()
def plot_polygons_with_colors(list_polygons, list_colors, dpi=150):
# Plot the polygons and their intersection
plt.figure(dpi=dpi)
fig, ax = plt.subplots()
for polygon, color in zip(list_polygons, list_colors):
plot_polygon(ax, polygon, color)
# Set axis limits
ax.set_aspect("equal")
# Set title
ax.set_title("Polygons and their Intersection")
plt.ylabel("lat")
plt.xlabel("lon")
plt.show()
def plot_polygons_from_df(df, dpi=150):
list_polygons = []
for index, row in df.iterrows():
list_polygons.append(row["polygon"])
plot_polygons(list_polygons=list_polygons, dpi=dpi)
def map_color(id):
return "blue"
def plot_polygons_from_df_with_color(df, dpi=150):
df["plot_colors"] = df["id"].apply(map_color)
list_polygons = []
list_colors = []
for index, row in df.iterrows():
list_polygons.append(row["polygon"])
list_colors.append(row["plot_colors"])
plot_polygons_with_colors(
list_polygons=list_polygons, list_colors=list_colors, dpi=dpi
)
def intersection(polygon, polygon_comparison):
return polygon.intersection(polygon_comparison)
def intersection_area(polygon, polygon_comparison):
return intersection(polygon, polygon_comparison).area
def intersection_area_ratio(polygon, polygon_comparison):
return intersection_area(polygon, polygon_comparison) / polygon.area
def containsPoint(polygonB, polygon):
coordinatesB = get_coordinates(polygonB)
for coord in coordinatesB:
coord = Point(coord)
if polygon.contains(coord):
return True
else:
return False
def get_coordinates(polygon):
coordinates = polygon.exterior.coords
coordinates = [list(pair) for pair in coordinates]
return coordinates
def mark_id_to_be_dropped(df, id_string):
df.loc[df['id']== id_string , 'to_drop'] = True
def mark_id_to_be_merged(df, id_string):
df.loc[df['id']== id_string , 'to_merge'] = True
def calc_overlapping_subset(df_input, index):
max_lat = df_input.iloc[index]['max_lat']
min_lat = df_input.iloc[index]['min_lat']
max_lon = df_input.iloc[index]['max_lon']
min_lon = df_input.iloc[index]['min_lon']
relevant_subset = df_input.loc[( (( ((max_lat < df_input['max_lat']) & (max_lat > df_input['min_lat'])) | \
((min_lat < df_input['max_lat']) & (min_lat > df_input['min_lat'])) )| \
( ((df_input['max_lat'] < max_lat) & (df_input['max_lat'] > min_lat)) | \
((df_input['min_lat'] > min_lat ) & ( df_input['min_lat'] < max_lat)) ) ) & \
(( ( ((max_lon < df_input['max_lon']) & (max_lon > df_input['min_lon'])) | \
((min_lon < df_input['max_lon']) & (min_lon > df_input['min_lon'])) ) ) |
( ((df_input['max_lon'] < max_lon ) & (df_input['max_lon'] > min_lon)) | \
((df_input['min_lon'] > min_lon) & (df_input['min_lon'] < max_lon)) ) ) )]
return relevant_subset
def remove_contained_poylgons(df_input):
df_result = df_input.copy()
for i in range (len(df_result)):
polygonA = df_input.iloc[i]['polygon']
#relevant_subset = df_result[df_result['polygon'].apply(lambda polygonB: containsPoint(polygonA, polygonB))]
#relevant_subset = relevant_subset[relevant_subset['id'] != df_input.iloc[i]['id']]
relevant_subset = calc_overlapping_subset(df_input = df_result, index = i)
# Experiment with this parameter to find the best threshold
# It certainly has to be smaller than 0.9
threshold = 0.85
for j in range(len(relevant_subset)):
ratio_current_choice = intersection_area_ratio(polygon = polygonA, polygon_comparison = relevant_subset.iloc[j]['polygon'])
ratio_alternative_choice = intersection_area_ratio(polygon = relevant_subset.iloc[j]['polygon'], polygon_comparison= polygonA)
if (ratio_current_choice > threshold) or (ratio_alternative_choice > threshold): # or ratio_alternative_choice > threashold:
if polygonA.area > relevant_subset.iloc[j]['polygon'].area:
mark_id_to_be_dropped(df=df_result, id_string = relevant_subset.iloc[j]['id'])
else:
mark_id_to_be_dropped(df=df_result, id_string = df_input.iloc[i]['id'])
#remove all polygons that had a marked id
df_result = df_result.loc[df_result["to_drop"] == False]
return df_result
def merge(df_input, polygon_index, merge_subset):
for j in range(len(merge_subset)):
#merge merged_polygon with j-th polygon in merge_subset
#delete j_th polygon in merge_subset from df_input
merged_polygon = df_input.iloc[polygon_index]
merged_polygon_id = df_input.iloc[polygon_index]['id']
merged_polygon_index = merged_polygon.index
#change by merge --> polygon, coordinates, min/max long lat, score (use max or min or avg)
tmp = merged_polygon['polygon'].union(merge_subset.iloc[j]['polygon'])
merged_coordinates = list(tmp.exterior.coords)
merged_polygon = Polygon(merged_coordinates) #new polygon
coordinates = [list(tup) for tup in merged_coordinates] #new coordinates
#updating min/max long/lat
min_lon = min([point[0] for point in coordinates])
max_lon = max([point[0] for point in coordinates])
min_lat = min([point[1] for point in coordinates])
max_lat = max([point[1] for point in coordinates])
polygon_score = merge_subset.iloc[j]['Confidence_score']
#updating merged polygon
df_input.loc[df_input['id'] == merged_polygon_id,'polygon'] = merged_polygon
df_input.loc[df_input['id'] == merged_polygon_id,'min_lon'] = min_lon
df_input.loc[df_input['id'] == merged_polygon_id,'max_lon'] = max_lon
df_input.loc[df_input['id'] == merged_polygon_id,'min_lat'] = min_lat
df_input.loc[df_input['id'] == merged_polygon_id,'max_lat'] = max_lat
df_input.loc[df_input['id'] == merged_polygon_id,'Confidence_score'] = (df_input.iloc[polygon_index]['Confidence_score'] + polygon_score)/2
df_input.loc[df_input['id'] == merged_polygon_id, 'coordinates'] = df_input.loc[df_input['id'] == merged_polygon_id, 'polygon'].apply(get_coordinates)
df_input = df_input.loc[df_input['id'] != merge_subset.iloc[j]['id']]
return df_input
def merge_overlapping(df_input):
# Experiment with this parameter to get the best results
threshold = 0.40
#df_result = df_input.copy()
for i in range(len(df_input)):
polygon = df_input.iloc[i]['polygon']
relevant_subset = calc_overlapping_subset(df_input=df_input, index=i)
toBeMerged = False
for j in range(len(relevant_subset)):
ratio_current_choice = intersection_area_ratio(polygon = polygon, polygon_comparison = relevant_subset.iloc[j]['polygon'])
ratio_alternative_choice = intersection_area_ratio(polygon = relevant_subset.iloc[j]['polygon'], polygon_comparison= polygon)
if (ratio_current_choice > threshold) or (ratio_alternative_choice > threshold):
toBeMerged = True
mark_id_to_be_merged(df=relevant_subset, id_string = relevant_subset.iloc[j]['id'])
if toBeMerged:
# deleting is handled in this funciton as well
df_input = merge(df_input=df_input, polygon_index=i, merge_subset=relevant_subset[relevant_subset['to_merge']==True])
return True, df_input
return False, df_input
def process(list_df):
df_res = pd.concat(list_df)
df_res = remove_contained_poylgons(df_input= df_res)
i = 0
merged, df_res = merge_overlapping(df_input=df_res)
while(merged):
i+=1
if i%100 == 0:
print(i)
merged, df_res = merge_overlapping(df_input=df_res)
return df_res
def combine_different_tile_size(df_smaller, df_bigger):
df_result = df_bigger.copy()
for i in range(len(df_smaller)):
max_lat = df_smaller.iloc[i]["max_lat"]
min_lat = df_smaller.iloc[i]["min_lat"]
max_lon = df_smaller.iloc[i]["max_lon"]
min_lon = df_smaller.iloc[i]["min_lon"]
polygon = df_smaller.iloc[i]["polygon"]
relevant_subset = df_bigger.loc[
(
((max_lat < df_bigger["max_lat"]) & (max_lat > df_bigger["min_lat"]))
| ((min_lat < df_bigger["max_lat"]) & (min_lat > df_bigger["min_lat"]))
)
& (
((max_lon < df_bigger["max_lon"]) & (max_lon > df_bigger["min_lon"]))
| ((min_lon < df_bigger["max_lon"]) & (min_lon > df_bigger["min_lon"]))
)
]
list_polygons = [polygon]
for index, row in relevant_subset.iterrows():
list_polygons.append(row["polygon"])
add_polygon = True
threashold = 0.15
for comparison_polygon in list_polygons[1:]:
ratio = intersection_area_ratio(polygon, comparison_polygon)
if ratio > threashold:
add_polygon = False
if add_polygon:
# df_result = pd.concat([df_result, df_result.iloc[[i]]], axis= 1, ignore_index=True)#df_result.append(df_result.iloc[i], ignore_index=True)
df_result = pd.concat(
[df_result, df_smaller.iloc[[i]]], axis=0, join="outer"
) #
return df_result
def clean(df, score_threashold=0.5):
df = df.loc[df["score"] > score_threashold]
return df
def row_to_feature(row):
feature = {
"id": row["id"],
"type": "Feature",
"properties": {"Confidence_score": row["Confidence_score"]},
"geometry": {"type": "Polygon", "coordinates": [row["coordinates"]]},
}
return feature
def export_df_as_geojson(df, filename):
features = [row_to_feature(row) for idx, row in df.iterrows()]
feature_collection = {
"type": "FeatureCollection",
"crs": {"type": "name", "properties": {"name": "urn:ogc:def:crs:EPSG::32720"}},
"features": features,
}
output_geojson = json.dumps(feature_collection)
with open(f"{filename}", "w") as f:
f.write(output_geojson)
print(f"GeoJSON data exported to '{filename}' file.")
def convert_id_to_string(prefix, x):
return prefix + str(x)
def postprocess(prediction_geojson_path, store_path):
with open(prediction_geojson_path,"r",) as file:
prediction_data = json.load(file)
df = turn_into_dataframe(prediction_data)
df["id"] = df.index
df['Confidence_score'] = df['Confidence_score'].astype(float)
df["id"] = df["id"].apply(lambda x: convert_id_to_string("df_", x))
df["to_drop"] = False
df["to_merge"] = False
print(f"Number of polygons before postprocessing: {len(df)}")
df_res = process([df])
print(f"Number of polygons after postprocessing: {len(df_res)}")
export_df_as_geojson(df=df_res, filename=store_path)
return df_res |