postprocess ready for merging
Browse files
.gitignore
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
.DS_Store
|
2 |
-
HelperScripts/input/
|
3 |
-
HelperScripts/output/
|
4 |
polygons_processing/output.geojson
|
|
|
|
|
|
|
|
1 |
.DS_Store
|
|
|
|
|
2 |
polygons_processing/output.geojson
|
3 |
+
detectree2/data/
|
4 |
+
detectree2/models/
|
5 |
+
detectree2/predictions/train_outputs
|
polygons_processing/polygons_merge_algo.ipynb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:011624c558fe8cee49c30f0e7b907e0f11065c04e870d9a2492a0d1fb3fa64d8
|
3 |
+
size 29589
|
polygons_processing/postpprocess_detectree2.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from shapely.geometry import Polygon, Point
|
3 |
+
from shapely.ops import unary_union
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from matplotlib.patches import Polygon as MplPolygon
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
|
10 |
+
def add_extreme_coordinates(polygon_data):
|
11 |
+
polygon_coords = np.array(polygon_data["geometry"]["coordinates"][0])
|
12 |
+
|
13 |
+
polygon_data["geometry"]["max_lat"] = max(polygon_coords[:, 1])
|
14 |
+
polygon_data["geometry"]["min_lat"] = min(polygon_coords[:, 1])
|
15 |
+
polygon_data["geometry"]["max_lon"] = max(polygon_coords[:, 0])
|
16 |
+
polygon_data["geometry"]["min_lon"] = min(polygon_coords[:, 0])
|
17 |
+
|
18 |
+
|
19 |
+
def turn_into_dataframe(data):
|
20 |
+
data_list = data["features"]
|
21 |
+
|
22 |
+
for i in range(len(data_list)):
|
23 |
+
add_extreme_coordinates(data_list[i])
|
24 |
+
|
25 |
+
df = pd.DataFrame(data_list).drop(columns="type")
|
26 |
+
|
27 |
+
dict_cols = ["properties", "geometry"]
|
28 |
+
for dict_col in dict_cols:
|
29 |
+
dict_df = pd.json_normalize(df[dict_col])
|
30 |
+
# Merge the new columns back into the original DataFrame
|
31 |
+
df = df.drop(columns=[dict_col]).join(dict_df)
|
32 |
+
df["coordinates"] = df["coordinates"].apply(lambda x: x[0])
|
33 |
+
df["polygon"] = df["coordinates"].apply(lambda x: Polygon(x))
|
34 |
+
|
35 |
+
df = df.drop(columns=["type"])
|
36 |
+
return df
|
37 |
+
|
38 |
+
# Function to plot a polygon
|
39 |
+
def plot_polygon(ax, polygon, color, label="label"):
|
40 |
+
if not polygon.is_empty:
|
41 |
+
x, y = polygon.exterior.xy
|
42 |
+
ax.fill(x, y, color=color, alpha=0.5, label=label)
|
43 |
+
|
44 |
+
|
45 |
+
def plot_polygons(list_polygons, first_one_different=False, dpi=150):
|
46 |
+
# Plot the polygons and their intersection
|
47 |
+
plt.figure(dpi=dpi)
|
48 |
+
fig, ax = plt.subplots()
|
49 |
+
|
50 |
+
if first_one_different:
|
51 |
+
plot_polygon(ax, list_polygons[0], "red", f"polygon {0}")
|
52 |
+
for i, polygon in enumerate(list_polygons[1:]):
|
53 |
+
plot_polygon(ax, polygon, "blue", f"polygon {i}")
|
54 |
+
else:
|
55 |
+
for i, polygon in enumerate(list_polygons):
|
56 |
+
plot_polygon(ax, polygon, "blue", f"polygon {i}")
|
57 |
+
|
58 |
+
# Plot the intersection
|
59 |
+
# plot_polygon(ax, intersection, 'red', 'Intersection')
|
60 |
+
|
61 |
+
# Add legend
|
62 |
+
# ax.legend()
|
63 |
+
|
64 |
+
# Set axis limits
|
65 |
+
ax.set_aspect("equal")
|
66 |
+
|
67 |
+
# Set title
|
68 |
+
ax.set_title("Polygons and their Intersection")
|
69 |
+
plt.ylabel("lat")
|
70 |
+
plt.xlabel("lon")
|
71 |
+
|
72 |
+
plt.show()
|
73 |
+
|
74 |
+
|
75 |
+
def plot_polygons_with_colors(list_polygons, list_colors, dpi=150):
|
76 |
+
# Plot the polygons and their intersection
|
77 |
+
plt.figure(dpi=dpi)
|
78 |
+
fig, ax = plt.subplots()
|
79 |
+
|
80 |
+
for polygon, color in zip(list_polygons, list_colors):
|
81 |
+
plot_polygon(ax, polygon, color)
|
82 |
+
|
83 |
+
# Set axis limits
|
84 |
+
ax.set_aspect("equal")
|
85 |
+
|
86 |
+
# Set title
|
87 |
+
ax.set_title("Polygons and their Intersection")
|
88 |
+
plt.ylabel("lat")
|
89 |
+
plt.xlabel("lon")
|
90 |
+
|
91 |
+
plt.show()
|
92 |
+
|
93 |
+
|
94 |
+
def plot_polygons_from_df(df, dpi=150):
|
95 |
+
list_polygons = []
|
96 |
+
for index, row in df.iterrows():
|
97 |
+
list_polygons.append(row["polygon"])
|
98 |
+
plot_polygons(list_polygons=list_polygons, dpi=dpi)
|
99 |
+
|
100 |
+
|
101 |
+
def map_color(id):
|
102 |
+
return "blue"
|
103 |
+
|
104 |
+
|
105 |
+
def plot_polygons_from_df_with_color(df, dpi=150):
|
106 |
+
|
107 |
+
df["plot_colors"] = df["id"].apply(map_color)
|
108 |
+
list_polygons = []
|
109 |
+
list_colors = []
|
110 |
+
for index, row in df.iterrows():
|
111 |
+
list_polygons.append(row["polygon"])
|
112 |
+
list_colors.append(row["plot_colors"])
|
113 |
+
plot_polygons_with_colors(
|
114 |
+
list_polygons=list_polygons, list_colors=list_colors, dpi=dpi
|
115 |
+
)
|
116 |
+
|
117 |
+
def intersection(polygon, polygon_comparison):
|
118 |
+
return polygon.intersection(polygon_comparison)
|
119 |
+
|
120 |
+
|
121 |
+
def intersection_area(polygon, polygon_comparison):
|
122 |
+
return intersection(polygon, polygon_comparison).area
|
123 |
+
|
124 |
+
|
125 |
+
def intersection_area_ratio(polygon, polygon_comparison):
|
126 |
+
return intersection_area(polygon, polygon_comparison) / polygon.area
|
127 |
+
|
128 |
+
def containsPoint(polygonB, polygon):
|
129 |
+
coordinatesB = get_coordinates(polygonB)
|
130 |
+
for coord in coordinatesB:
|
131 |
+
coord = Point(coord)
|
132 |
+
if polygon.contains(coord):
|
133 |
+
return True
|
134 |
+
else:
|
135 |
+
return False
|
136 |
+
|
137 |
+
def get_coordinates(polygon):
|
138 |
+
coordinates = polygon.exterior.coords
|
139 |
+
coordinates = [list(pair) for pair in coordinates]
|
140 |
+
return coordinates
|
141 |
+
|
142 |
+
def mark_id_to_be_dropped(df, id_string):
|
143 |
+
df.loc[df['id']== id_string , 'to_drop'] = True
|
144 |
+
|
145 |
+
def mark_id_to_be_merged(df, id_string):
|
146 |
+
df.loc[df['id']== id_string , 'to_merge'] = True
|
147 |
+
|
148 |
+
def calc_overlapping_subset(df_input, index):
|
149 |
+
max_lat = df_input.iloc[index]['max_lat']
|
150 |
+
min_lat = df_input.iloc[index]['min_lat']
|
151 |
+
max_lon = df_input.iloc[index]['max_lon']
|
152 |
+
min_lon = df_input.iloc[index]['min_lon']
|
153 |
+
relevant_subset = df_input.loc[( (( ((max_lat < df_input['max_lat']) & (max_lat > df_input['min_lat'])) | \
|
154 |
+
((min_lat < df_input['max_lat']) & (min_lat > df_input['min_lat'])) )| \
|
155 |
+
( ((df_input['max_lat'] < max_lat) & (df_input['max_lat'] > min_lat)) | \
|
156 |
+
((df_input['min_lat'] > min_lat ) & ( df_input['min_lat'] < max_lat)) ) ) & \
|
157 |
+
(( ( ((max_lon < df_input['max_lon']) & (max_lon > df_input['min_lon'])) | \
|
158 |
+
((min_lon < df_input['max_lon']) & (min_lon > df_input['min_lon'])) ) ) |
|
159 |
+
( ((df_input['max_lon'] < max_lon ) & (df_input['max_lon'] > min_lon)) | \
|
160 |
+
((df_input['min_lon'] > min_lon) & (df_input['min_lon'] < max_lon)) ) ) )]
|
161 |
+
return relevant_subset
|
162 |
+
|
163 |
+
def remove_contained_poylgons(df_input):
|
164 |
+
df_result = df_input.copy()
|
165 |
+
|
166 |
+
for i in range (len(df_result)):
|
167 |
+
|
168 |
+
polygonA = df_input.iloc[i]['polygon']
|
169 |
+
|
170 |
+
#relevant_subset = df_result[df_result['polygon'].apply(lambda polygonB: containsPoint(polygonA, polygonB))]
|
171 |
+
#relevant_subset = relevant_subset[relevant_subset['id'] != df_input.iloc[i]['id']]
|
172 |
+
relevant_subset = calc_overlapping_subset(df_input = df_result, index = i)
|
173 |
+
|
174 |
+
# Experiment with this parameter to find the best threshold
|
175 |
+
# It certainly has to be smaller than 0.9
|
176 |
+
threshold = 0.85
|
177 |
+
for j in range(len(relevant_subset)):
|
178 |
+
ratio_current_choice = intersection_area_ratio(polygon = polygonA, polygon_comparison = relevant_subset.iloc[j]['polygon'])
|
179 |
+
ratio_alternative_choice = intersection_area_ratio(polygon = relevant_subset.iloc[j]['polygon'], polygon_comparison= polygonA)
|
180 |
+
if (ratio_current_choice > threshold) or (ratio_alternative_choice > threshold): # or ratio_alternative_choice > threashold:
|
181 |
+
if polygonA.area > relevant_subset.iloc[j]['polygon'].area:
|
182 |
+
mark_id_to_be_dropped(df=df_result, id_string = relevant_subset.iloc[j]['id'])
|
183 |
+
else:
|
184 |
+
mark_id_to_be_dropped(df=df_result, id_string = df_input.iloc[i]['id'])
|
185 |
+
|
186 |
+
#remove all polygons that had a marked id
|
187 |
+
df_result = df_result.loc[df_result["to_drop"] == False]
|
188 |
+
return df_result
|
189 |
+
|
190 |
+
def merge(df_input, polygon_index, merge_subset):
|
191 |
+
for j in range(len(merge_subset)):
|
192 |
+
#merge merged_polygon with j-th polygon in merge_subset
|
193 |
+
#delete j_th polygon in merge_subset from df_input
|
194 |
+
merged_polygon = df_input.iloc[polygon_index]
|
195 |
+
merged_polygon_id = df_input.iloc[polygon_index]['id']
|
196 |
+
merged_polygon_index = merged_polygon.index
|
197 |
+
|
198 |
+
#change by merge --> polygon, coordinates, min/max long lat, score (use max or min or avg)
|
199 |
+
tmp = merged_polygon['polygon'].union(merge_subset.iloc[j]['polygon'])
|
200 |
+
merged_coordinates = list(tmp.exterior.coords)
|
201 |
+
merged_polygon = Polygon(merged_coordinates) #new polygon
|
202 |
+
|
203 |
+
coordinates = [list(tup) for tup in merged_coordinates] #new coordinates
|
204 |
+
#updating min/max long/lat
|
205 |
+
min_lon = min([point[0] for point in coordinates])
|
206 |
+
max_lon = max([point[0] for point in coordinates])
|
207 |
+
min_lat = min([point[1] for point in coordinates])
|
208 |
+
max_lat = max([point[1] for point in coordinates])
|
209 |
+
polygon_score = merge_subset.iloc[j]['Confidence_score']
|
210 |
+
|
211 |
+
#updating merged polygon
|
212 |
+
df_input.loc[df_input['id'] == merged_polygon_id,'polygon'] = merged_polygon
|
213 |
+
df_input.loc[df_input['id'] == merged_polygon_id,'min_lon'] = min_lon
|
214 |
+
df_input.loc[df_input['id'] == merged_polygon_id,'max_lon'] = max_lon
|
215 |
+
df_input.loc[df_input['id'] == merged_polygon_id,'min_lat'] = min_lat
|
216 |
+
df_input.loc[df_input['id'] == merged_polygon_id,'max_lat'] = max_lat
|
217 |
+
df_input.loc[df_input['id'] == merged_polygon_id,'Confidence_score'] = (df_input.iloc[polygon_index]['Confidence_score'] + polygon_score)/2
|
218 |
+
df_input.loc[df_input['id'] == merged_polygon_id, 'coordinates'] = df_input.loc[df_input['id'] == merged_polygon_id, 'polygon'].apply(get_coordinates)
|
219 |
+
df_input = df_input.loc[df_input['id'] != merge_subset.iloc[j]['id']]
|
220 |
+
return df_input
|
221 |
+
|
222 |
+
|
223 |
+
def merge_overlapping(df_input):
|
224 |
+
# Experiment with this parameter to get the best results
|
225 |
+
threshold = 0.40
|
226 |
+
#df_result = df_input.copy()
|
227 |
+
|
228 |
+
for i in range(len(df_input)):
|
229 |
+
polygon = df_input.iloc[i]['polygon']
|
230 |
+
relevant_subset = calc_overlapping_subset(df_input=df_input, index=i)
|
231 |
+
toBeMerged = False
|
232 |
+
for j in range(len(relevant_subset)):
|
233 |
+
ratio_current_choice = intersection_area_ratio(polygon = polygon, polygon_comparison = relevant_subset.iloc[j]['polygon'])
|
234 |
+
ratio_alternative_choice = intersection_area_ratio(polygon = relevant_subset.iloc[j]['polygon'], polygon_comparison= polygon)
|
235 |
+
if (ratio_current_choice > threshold) or (ratio_alternative_choice > threshold):
|
236 |
+
toBeMerged = True
|
237 |
+
mark_id_to_be_merged(df=relevant_subset, id_string = relevant_subset.iloc[j]['id'])
|
238 |
+
|
239 |
+
if toBeMerged:
|
240 |
+
# deleting is handled in this funciton as well
|
241 |
+
df_input = merge(df_input=df_input, polygon_index=i, merge_subset=relevant_subset[relevant_subset['to_merge']==True])
|
242 |
+
return True, df_input
|
243 |
+
|
244 |
+
return False, df_input
|
245 |
+
|
246 |
+
|
247 |
+
def process(list_df):
|
248 |
+
df_res = pd.concat(list_df)
|
249 |
+
df_res = remove_contained_poylgons(df_input= df_res)
|
250 |
+
i = 0
|
251 |
+
merged, df_res = merge_overlapping(df_input=df_res)
|
252 |
+
while(merged):
|
253 |
+
i+=1
|
254 |
+
if i%100 == 0:
|
255 |
+
print(i)
|
256 |
+
merged, df_res = merge_overlapping(df_input=df_res)
|
257 |
+
return df_res
|
258 |
+
|
259 |
+
|
260 |
+
def combine_different_tile_size(df_smaller, df_bigger):
|
261 |
+
|
262 |
+
df_result = df_bigger.copy()
|
263 |
+
|
264 |
+
for i in range(len(df_smaller)):
|
265 |
+
max_lat = df_smaller.iloc[i]["max_lat"]
|
266 |
+
min_lat = df_smaller.iloc[i]["min_lat"]
|
267 |
+
max_lon = df_smaller.iloc[i]["max_lon"]
|
268 |
+
min_lon = df_smaller.iloc[i]["min_lon"]
|
269 |
+
|
270 |
+
polygon = df_smaller.iloc[i]["polygon"]
|
271 |
+
|
272 |
+
relevant_subset = df_bigger.loc[
|
273 |
+
(
|
274 |
+
((max_lat < df_bigger["max_lat"]) & (max_lat > df_bigger["min_lat"]))
|
275 |
+
| ((min_lat < df_bigger["max_lat"]) & (min_lat > df_bigger["min_lat"]))
|
276 |
+
)
|
277 |
+
& (
|
278 |
+
((max_lon < df_bigger["max_lon"]) & (max_lon > df_bigger["min_lon"]))
|
279 |
+
| ((min_lon < df_bigger["max_lon"]) & (min_lon > df_bigger["min_lon"]))
|
280 |
+
)
|
281 |
+
]
|
282 |
+
|
283 |
+
list_polygons = [polygon]
|
284 |
+
|
285 |
+
for index, row in relevant_subset.iterrows():
|
286 |
+
list_polygons.append(row["polygon"])
|
287 |
+
|
288 |
+
add_polygon = True
|
289 |
+
threashold = 0.15
|
290 |
+
for comparison_polygon in list_polygons[1:]:
|
291 |
+
ratio = intersection_area_ratio(polygon, comparison_polygon)
|
292 |
+
if ratio > threashold:
|
293 |
+
add_polygon = False
|
294 |
+
|
295 |
+
if add_polygon:
|
296 |
+
# df_result = pd.concat([df_result, df_result.iloc[[i]]], axis= 1, ignore_index=True)#df_result.append(df_result.iloc[i], ignore_index=True)
|
297 |
+
df_result = pd.concat(
|
298 |
+
[df_result, df_smaller.iloc[[i]]], axis=0, join="outer"
|
299 |
+
) #
|
300 |
+
|
301 |
+
return df_result
|
302 |
+
|
303 |
+
|
304 |
+
def clean(df, score_threashold=0.5):
|
305 |
+
df = df.loc[df["score"] > score_threashold]
|
306 |
+
return df
|
307 |
+
|
308 |
+
def row_to_feature(row):
|
309 |
+
feature = {
|
310 |
+
"id": row["id"],
|
311 |
+
"type": "Feature",
|
312 |
+
"properties": {"Confidence_score": row["Confidence_score"]},
|
313 |
+
"geometry": {"type": "Polygon", "coordinates": [row["coordinates"]]},
|
314 |
+
}
|
315 |
+
return feature
|
316 |
+
|
317 |
+
|
318 |
+
def export_df_as_geojson(df, filename="output"):
|
319 |
+
features = [row_to_feature(row) for idx, row in df.iterrows()]
|
320 |
+
|
321 |
+
feature_collection = {
|
322 |
+
"type": "FeatureCollection",
|
323 |
+
"crs": {"type": "name", "properties": {"name": "urn:ogc:def:crs:EPSG::32720"}},
|
324 |
+
"features": features,
|
325 |
+
}
|
326 |
+
|
327 |
+
output_geojson = json.dumps(feature_collection)
|
328 |
+
|
329 |
+
with open(f"{filename}.geojson", "w") as f:
|
330 |
+
f.write(output_geojson)
|
331 |
+
|
332 |
+
print(f"GeoJSON data exported to '{filename}.geojson' file.")
|
333 |
+
|
334 |
+
def convert_id_to_string(prefix, x):
|
335 |
+
return prefix + str(x)
|
336 |
+
|
337 |
+
def postprocess(prediction_geojson_path):
|
338 |
+
with open(prediction_geojson_path,"r",) as file:
|
339 |
+
prediction_data = json.load(file)
|
340 |
+
|
341 |
+
df = turn_into_dataframe(prediction_data)
|
342 |
+
|
343 |
+
df["id"] = df.index
|
344 |
+
|
345 |
+
df['Confidence_score'] = df['Confidence_score'].astype(float)
|
346 |
+
|
347 |
+
df["id"] = df["id"].apply(lambda x: convert_id_to_string("df_", x))
|
348 |
+
|
349 |
+
df["to_drop"] = False
|
350 |
+
df["to_merge"] = False
|
351 |
+
|
352 |
+
df_res = process([df])
|
353 |
+
|
354 |
+
export_df_as_geojson(df=df_res, filename="postprocessed_predictions")
|