File size: 13,637 Bytes
7b4e127 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# -*- coding: utf-8 -*-
"""classification.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1JuZNV3fqC5XQ0L-jhIyVRbIDPfWWGkVI
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, models, transforms
from torch.utils.data import DataLoader
from torch.utils.data import DataLoader, random_split
import os
import matplotlib.pyplot as plt
import random
from PIL import Image
import numpy as np
import pandas as pd
# Define the data directories
data_dir = 'drive/MyDrive/Ai_Hackathon_2024/plant_data/data_for_training'
augmented_data_dir = 'drive/MyDrive/Ai_Hackathon_2024/plant_data/augmented_data'
# Define the desired number of images per class
N = 50
# Define the augmentation transforms
augmentation_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(30),
transforms.RandomAffine(degrees=0, translate=(0.1, 0.1)),
transforms.RandomResizedCrop(size=(224, 224), scale=(0.8, 1.0)),
transforms.Pad(padding=10, padding_mode='reflect'), # Add padding with reflection
transforms.ToTensor(),
])
# Load the dataset
print('loading dataset...')
dataset = datasets.ImageFolder(data_dir)
class_names = dataset.classes
print('loaded dataset.')
# Function to save augmented images
def save_image(img, path, idx):
img.save(os.path.join(path, f'{idx}.png'))
# Augment the dataset
if not os.path.exists(augmented_data_dir):
os.makedirs(augmented_data_dir)
print('starting augmentation process...')
for class_idx in range(len(dataset.classes)):
print(f"class_idx = {class_idx}")
class_dir = os.path.join(augmented_data_dir, dataset.classes[class_idx])
if not os.path.exists(class_dir):
os.makedirs(class_dir)
class_images = [img_path for img_path, label in dataset.samples if label == class_idx]
current_count = 0
# Save original images first
for img_path in class_images:
img = Image.open(img_path)
save_image(img, class_dir, current_count)
current_count += 1
# If there are fewer than N images, augment the dataset
while current_count < N:
img_path = random.choice(class_images)
img = Image.open(img_path)
img = augmentation_transforms(img)
img = transforms.ToPILImage()(img) # Convert back to PIL Image
save_image(img, class_dir, current_count)
current_count += 1
print('Data augmentation completed.')
# Define the data directory
data_dir = augmented_data_dir #'drive/MyDrive/Ai_Hackathon_2024/plant_data/data_for_training'
# Set the random seed for reproducibility
seed = 42
torch.manual_seed(seed)
# Define transforms
data_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(30),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Create the dataset
full_dataset = datasets.ImageFolder(data_dir, transform=data_transforms)
# Define the train-validation split ratio
train_size = int(0.8 * len(full_dataset))
val_size = len(full_dataset) - train_size
# Split the dataset
train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size], generator=torch.Generator().manual_seed(seed))
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# Load the pre-trained ResNet50 model
resnet50 = models.resnet50(weights='ResNet50_Weights.DEFAULT')
# Freeze the parameters of the pre-trained model
for param in resnet50.parameters():
param.requires_grad = False
# Remove the final fully connected layer
num_ftrs = resnet50.fc.in_features
resnet50.fc = nn.Identity() # Replace the final layer with an identity function to get the feature vectors
# Define a custom neural network with one hidden layer and an output layer
class CustomNet(nn.Module):
def __init__(self, num_ftrs, num_classes):
super(CustomNet, self).__init__()
self.resnet50 = resnet50
self.hidden = nn.Linear(num_ftrs, 512)
self.relu = nn.ReLU()
self.output = nn.Linear(512, num_classes)
def forward(self, x):
x = self.resnet50(x) # Extract features using the pre-trained model
x = self.hidden(x) # Pass through the hidden layer
x = self.relu(x) # Apply ReLU activation
x = self.output(x) # Output layer
return x
# Instantiate the custom network
num_classes = len(full_dataset.classes)
model = CustomNet(num_ftrs, num_classes)
# Move the model to the appropriate device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Define criterion and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
def train_model(model, dataloaders, criterion, optimizer, num_epochs=10):
best_model_wts = model.state_dict()
best_acc = 0.0
train_losses = []
val_losses = []
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs, labels = inputs.to(device), labels.to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# Backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
if phase == 'train':
train_losses.append(epoch_loss)
else:
val_losses.append(epoch_loss)
# Deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = model.state_dict()
print('Best val Acc: {:4f}'.format(best_acc))
# Load best model weights
model.load_state_dict(best_model_wts)
# Plot the training and validation loss
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
return model
# Create a dictionary to hold the dataloaders
dataloaders = {'train': train_loader, 'val': val_loader}
# Train and evaluate the model
model = train_model(model, dataloaders, criterion, optimizer, num_epochs=10)
# Save the model
torch.save(model.state_dict(), 'drive/MyDrive/Ai_Hackathon_2024/plant_data/fine_tuned_plant_classifier.pth')
# Function to evaluate the model
def evaluate_model(model, dataloader):
model.eval()
correct = 0
total = 0
all_preds = []
all_labels = []
with torch.no_grad():
for inputs, labels in dataloader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
correct += (preds == labels).sum().item()
total += labels.size(0)
accuracy = correct / total
return accuracy, all_preds, all_labels
# Evaluate the model
dataloader = DataLoader(full_dataset, batch_size=32, shuffle=True)
accuracy, all_preds, all_labels = evaluate_model(model, dataloader)
# Calculate the number of correct and incorrect predictions
correct_preds = sum(np.array(all_preds) == np.array(all_labels))
incorrect_preds = len(all_labels) - correct_preds
print(f'Total images: {len(all_labels)}')
print(f'Correct predictions: {correct_preds}')
print(f'Incorrect predictions: {incorrect_preds}')
print(f'Accuracy: {accuracy:.4f}')
##-----------------------------------------------------------##
real_dataset = datasets.ImageFolder('drive/MyDrive/Ai_Hackathon_2024/plant_data/data_for_training', transform=data_transforms)
# Evaluate the model
dataloader = DataLoader(real_dataset, batch_size=32, shuffle=True)
accuracy, all_preds, all_labels = evaluate_model(model, dataloader)
# Calculate the number of correct and incorrect predictions
correct_preds = sum(np.array(all_preds) == np.array(all_labels))
incorrect_preds = len(all_labels) - correct_preds
print('-'*10)
print(f'Total images: {len(all_labels)}')
print(f'Correct predictions: {correct_preds}')
print(f'Incorrect predictions: {incorrect_preds}')
print(f'Accuracy: {accuracy:.4f}')
# Function to load and preprocess the image
def process_image(image_path):
data_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image = Image.open(image_path).convert('RGB')
image = data_transform(image)# data_transforms(image) # <-- data transforms uses all the random cropping as well
image = image.unsqueeze(0) # Add batch dimension
return image
#----------------------------INFERENCE PART----------------------------
# Function to predict the class of a single image
def predict_single_image(image_path, model):
# Load the image and preprocess it
image = process_image(image_path)
# Load the model
model.eval()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Pass the image through the model
with torch.no_grad():
image = image.to(device)
outputs = model(image)
probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
# Return the class names and their probabilities as a Pandas Series
return pd.Series(probabilities.cpu().numpy(), index=class_names).sort_values(ascending=False)
def classify(img_path):
# Path to the single image
image_path = img_path
# Initialize your custom model
model = CustomNet(num_ftrs, num_classes)
# Load the trained model weights
model.load_state_dict(torch.load('./fine_tuned:plant_classifier.pth'))
# Predict the class probabilities
class_probabilities = predict_single_image(image_path, model)
return class_probabilities
#----------------------------INFERENCE PART----------------------------
## script to automatically include larger drone images
import os
import shutil
from PIL import Image
# Define the paths
source_dir = 'path/to/source_images' # The directory with new images
target_base_dir = 'path/to/training_images' # The base directory containing original class folders
new_base_dir = 'path/to/training_images_2' # The base directory for the new substructure
# Extract the class folders
class_folders = [d for d in os.listdir(target_base_dir) if os.path.isdir(os.path.join(target_base_dir, d))]
# Function to extract ID from a filename
def extract_id(filename):
return filename.split('_')[0] # Assumes ID is the first part of the filename separated by '_'
# Function to crop the middle section of an image
def crop_middle_section(image):
width, height = image.size
new_width = width // 3
new_height = height // 3
left = (width - new_width) // 2
top = (height - new_height) // 2
right = left + new_width
bottom = top + new_height
return image.crop((left, top, right, bottom))
# Create the new base directory if it does not exist
os.makedirs(new_base_dir, exist_ok=True)
# Create a dictionary to map IDs to their respective class folders
id_to_class_folder = {}
for class_folder in class_folders:
class_folder_path = os.path.join(target_base_dir, class_folder)
for filename in os.listdir(class_folder_path):
if os.path.isfile(os.path.join(class_folder_path, filename)):
file_id = extract_id(filename)
id_to_class_folder[file_id] = class_folder
# Copy and manipulate the matching images
for filename in os.listdir(source_dir):
if os.path.isfile(os.path.join(source_dir, filename)):
file_id = extract_id(filename)
if file_id in id_to_class_folder:
target_class_folder = id_to_class_folder[file_id]
new_class_folder_path = os.path.join(new_base_dir, target_class_folder)
os.makedirs(new_class_folder_path, exist_ok=True) # Create the class folder if it doesn't exist
target_path = os.path.join(new_class_folder_path, filename)
# Open and manipulate the image
image_path = os.path.join(source_dir, filename)
with Image.open(image_path) as img:
cropped_img = crop_middle_section(img)
cropped_img.save(target_path)
print(f'Copied and cropped {filename} to {new_class_folder_path}')
print('Image processing and copying completed.') |