classification model
Browse files- classification/classification.py +396 -0
classification/classification.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""classification.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1JuZNV3fqC5XQ0L-jhIyVRbIDPfWWGkVI
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
from torchvision import datasets, models, transforms
|
14 |
+
from torch.utils.data import DataLoader
|
15 |
+
from torch.utils.data import DataLoader, random_split
|
16 |
+
import os
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
import random
|
19 |
+
from PIL import Image
|
20 |
+
import numpy as np
|
21 |
+
import pandas as pd
|
22 |
+
|
23 |
+
# Define the data directories
|
24 |
+
data_dir = 'drive/MyDrive/Ai_Hackathon_2024/plant_data/data_for_training'
|
25 |
+
augmented_data_dir = 'drive/MyDrive/Ai_Hackathon_2024/plant_data/augmented_data'
|
26 |
+
|
27 |
+
# Define the desired number of images per class
|
28 |
+
N = 50
|
29 |
+
|
30 |
+
# Define the augmentation transforms
|
31 |
+
augmentation_transforms = transforms.Compose([
|
32 |
+
transforms.RandomHorizontalFlip(),
|
33 |
+
transforms.RandomRotation(30),
|
34 |
+
transforms.RandomAffine(degrees=0, translate=(0.1, 0.1)),
|
35 |
+
transforms.RandomResizedCrop(size=(224, 224), scale=(0.8, 1.0)),
|
36 |
+
transforms.Pad(padding=10, padding_mode='reflect'), # Add padding with reflection
|
37 |
+
transforms.ToTensor(),
|
38 |
+
])
|
39 |
+
|
40 |
+
# Load the dataset
|
41 |
+
print('loading dataset...')
|
42 |
+
dataset = datasets.ImageFolder(data_dir)
|
43 |
+
class_names = dataset.classes
|
44 |
+
|
45 |
+
print('loaded dataset.')
|
46 |
+
|
47 |
+
# Function to save augmented images
|
48 |
+
def save_image(img, path, idx):
|
49 |
+
img.save(os.path.join(path, f'{idx}.png'))
|
50 |
+
|
51 |
+
# Augment the dataset
|
52 |
+
if not os.path.exists(augmented_data_dir):
|
53 |
+
os.makedirs(augmented_data_dir)
|
54 |
+
|
55 |
+
print('starting augmentation process...')
|
56 |
+
for class_idx in range(len(dataset.classes)):
|
57 |
+
print(f"class_idx = {class_idx}")
|
58 |
+
class_dir = os.path.join(augmented_data_dir, dataset.classes[class_idx])
|
59 |
+
if not os.path.exists(class_dir):
|
60 |
+
os.makedirs(class_dir)
|
61 |
+
|
62 |
+
class_images = [img_path for img_path, label in dataset.samples if label == class_idx]
|
63 |
+
current_count = 0
|
64 |
+
|
65 |
+
# Save original images first
|
66 |
+
for img_path in class_images:
|
67 |
+
img = Image.open(img_path)
|
68 |
+
save_image(img, class_dir, current_count)
|
69 |
+
current_count += 1
|
70 |
+
|
71 |
+
# If there are fewer than N images, augment the dataset
|
72 |
+
while current_count < N:
|
73 |
+
img_path = random.choice(class_images)
|
74 |
+
img = Image.open(img_path)
|
75 |
+
img = augmentation_transforms(img)
|
76 |
+
img = transforms.ToPILImage()(img) # Convert back to PIL Image
|
77 |
+
save_image(img, class_dir, current_count)
|
78 |
+
current_count += 1
|
79 |
+
|
80 |
+
print('Data augmentation completed.')
|
81 |
+
|
82 |
+
# Define the data directory
|
83 |
+
data_dir = augmented_data_dir #'drive/MyDrive/Ai_Hackathon_2024/plant_data/data_for_training'
|
84 |
+
|
85 |
+
|
86 |
+
# Set the random seed for reproducibility
|
87 |
+
seed = 42
|
88 |
+
torch.manual_seed(seed)
|
89 |
+
|
90 |
+
# Define transforms
|
91 |
+
data_transforms = transforms.Compose([
|
92 |
+
transforms.Resize((224, 224)),
|
93 |
+
transforms.RandomHorizontalFlip(),
|
94 |
+
transforms.RandomRotation(30),
|
95 |
+
transforms.ToTensor(),
|
96 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
97 |
+
])
|
98 |
+
|
99 |
+
# Create the dataset
|
100 |
+
full_dataset = datasets.ImageFolder(data_dir, transform=data_transforms)
|
101 |
+
|
102 |
+
# Define the train-validation split ratio
|
103 |
+
train_size = int(0.8 * len(full_dataset))
|
104 |
+
val_size = len(full_dataset) - train_size
|
105 |
+
|
106 |
+
# Split the dataset
|
107 |
+
train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size], generator=torch.Generator().manual_seed(seed))
|
108 |
+
|
109 |
+
# Create data loaders
|
110 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
111 |
+
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
|
112 |
+
|
113 |
+
# Load the pre-trained ResNet50 model
|
114 |
+
resnet50 = models.resnet50(weights='ResNet50_Weights.DEFAULT')
|
115 |
+
|
116 |
+
# Freeze the parameters of the pre-trained model
|
117 |
+
for param in resnet50.parameters():
|
118 |
+
param.requires_grad = False
|
119 |
+
|
120 |
+
# Remove the final fully connected layer
|
121 |
+
num_ftrs = resnet50.fc.in_features
|
122 |
+
resnet50.fc = nn.Identity() # Replace the final layer with an identity function to get the feature vectors
|
123 |
+
|
124 |
+
# Define a custom neural network with one hidden layer and an output layer
|
125 |
+
class CustomNet(nn.Module):
|
126 |
+
def __init__(self, num_ftrs, num_classes):
|
127 |
+
super(CustomNet, self).__init__()
|
128 |
+
self.resnet50 = resnet50
|
129 |
+
self.hidden = nn.Linear(num_ftrs, 512)
|
130 |
+
self.relu = nn.ReLU()
|
131 |
+
self.output = nn.Linear(512, num_classes)
|
132 |
+
|
133 |
+
def forward(self, x):
|
134 |
+
x = self.resnet50(x) # Extract features using the pre-trained model
|
135 |
+
x = self.hidden(x) # Pass through the hidden layer
|
136 |
+
x = self.relu(x) # Apply ReLU activation
|
137 |
+
x = self.output(x) # Output layer
|
138 |
+
return x
|
139 |
+
|
140 |
+
# Instantiate the custom network
|
141 |
+
num_classes = len(full_dataset.classes)
|
142 |
+
model = CustomNet(num_ftrs, num_classes)
|
143 |
+
|
144 |
+
# Move the model to the appropriate device
|
145 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
146 |
+
model = model.to(device)
|
147 |
+
|
148 |
+
# Define criterion and optimizer
|
149 |
+
criterion = nn.CrossEntropyLoss()
|
150 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
151 |
+
|
152 |
+
def train_model(model, dataloaders, criterion, optimizer, num_epochs=10):
|
153 |
+
best_model_wts = model.state_dict()
|
154 |
+
best_acc = 0.0
|
155 |
+
|
156 |
+
train_losses = []
|
157 |
+
val_losses = []
|
158 |
+
|
159 |
+
for epoch in range(num_epochs):
|
160 |
+
print(f'Epoch {epoch}/{num_epochs - 1}')
|
161 |
+
print('-' * 10)
|
162 |
+
|
163 |
+
# Each epoch has a training and validation phase
|
164 |
+
for phase in ['train', 'val']:
|
165 |
+
if phase == 'train':
|
166 |
+
model.train()
|
167 |
+
else:
|
168 |
+
model.eval()
|
169 |
+
|
170 |
+
running_loss = 0.0
|
171 |
+
running_corrects = 0
|
172 |
+
|
173 |
+
for inputs, labels in dataloaders[phase]:
|
174 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
175 |
+
|
176 |
+
# Zero the parameter gradients
|
177 |
+
optimizer.zero_grad()
|
178 |
+
|
179 |
+
# Forward
|
180 |
+
with torch.set_grad_enabled(phase == 'train'):
|
181 |
+
outputs = model(inputs)
|
182 |
+
_, preds = torch.max(outputs, 1)
|
183 |
+
loss = criterion(outputs, labels)
|
184 |
+
|
185 |
+
# Backward + optimize only if in training phase
|
186 |
+
if phase == 'train':
|
187 |
+
loss.backward()
|
188 |
+
optimizer.step()
|
189 |
+
|
190 |
+
running_loss += loss.item() * inputs.size(0)
|
191 |
+
running_corrects += torch.sum(preds == labels.data)
|
192 |
+
|
193 |
+
epoch_loss = running_loss / len(dataloaders[phase].dataset)
|
194 |
+
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
|
195 |
+
|
196 |
+
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
|
197 |
+
|
198 |
+
if phase == 'train':
|
199 |
+
train_losses.append(epoch_loss)
|
200 |
+
else:
|
201 |
+
val_losses.append(epoch_loss)
|
202 |
+
|
203 |
+
# Deep copy the model
|
204 |
+
if phase == 'val' and epoch_acc > best_acc:
|
205 |
+
best_acc = epoch_acc
|
206 |
+
best_model_wts = model.state_dict()
|
207 |
+
|
208 |
+
print('Best val Acc: {:4f}'.format(best_acc))
|
209 |
+
|
210 |
+
# Load best model weights
|
211 |
+
model.load_state_dict(best_model_wts)
|
212 |
+
|
213 |
+
# Plot the training and validation loss
|
214 |
+
plt.figure(figsize=(10, 5))
|
215 |
+
plt.plot(train_losses, label='Training Loss')
|
216 |
+
plt.plot(val_losses, label='Validation Loss')
|
217 |
+
plt.xlabel('Epochs')
|
218 |
+
plt.ylabel('Loss')
|
219 |
+
plt.legend()
|
220 |
+
plt.show()
|
221 |
+
|
222 |
+
return model
|
223 |
+
|
224 |
+
# Create a dictionary to hold the dataloaders
|
225 |
+
dataloaders = {'train': train_loader, 'val': val_loader}
|
226 |
+
|
227 |
+
# Train and evaluate the model
|
228 |
+
model = train_model(model, dataloaders, criterion, optimizer, num_epochs=10)
|
229 |
+
|
230 |
+
# Save the model
|
231 |
+
torch.save(model.state_dict(), 'drive/MyDrive/Ai_Hackathon_2024/plant_data/fine_tuned_plant_classifier.pth')
|
232 |
+
|
233 |
+
# Function to evaluate the model
|
234 |
+
def evaluate_model(model, dataloader):
|
235 |
+
model.eval()
|
236 |
+
correct = 0
|
237 |
+
total = 0
|
238 |
+
|
239 |
+
all_preds = []
|
240 |
+
all_labels = []
|
241 |
+
|
242 |
+
with torch.no_grad():
|
243 |
+
for inputs, labels in dataloader:
|
244 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
245 |
+
outputs = model(inputs)
|
246 |
+
_, preds = torch.max(outputs, 1)
|
247 |
+
|
248 |
+
all_preds.extend(preds.cpu().numpy())
|
249 |
+
all_labels.extend(labels.cpu().numpy())
|
250 |
+
|
251 |
+
correct += (preds == labels).sum().item()
|
252 |
+
total += labels.size(0)
|
253 |
+
|
254 |
+
accuracy = correct / total
|
255 |
+
return accuracy, all_preds, all_labels
|
256 |
+
|
257 |
+
# Evaluate the model
|
258 |
+
dataloader = DataLoader(full_dataset, batch_size=32, shuffle=True)
|
259 |
+
accuracy, all_preds, all_labels = evaluate_model(model, dataloader)
|
260 |
+
|
261 |
+
# Calculate the number of correct and incorrect predictions
|
262 |
+
correct_preds = sum(np.array(all_preds) == np.array(all_labels))
|
263 |
+
incorrect_preds = len(all_labels) - correct_preds
|
264 |
+
|
265 |
+
print(f'Total images: {len(all_labels)}')
|
266 |
+
print(f'Correct predictions: {correct_preds}')
|
267 |
+
print(f'Incorrect predictions: {incorrect_preds}')
|
268 |
+
print(f'Accuracy: {accuracy:.4f}')
|
269 |
+
|
270 |
+
##-----------------------------------------------------------##
|
271 |
+
real_dataset = datasets.ImageFolder('drive/MyDrive/Ai_Hackathon_2024/plant_data/data_for_training', transform=data_transforms)
|
272 |
+
|
273 |
+
# Evaluate the model
|
274 |
+
dataloader = DataLoader(real_dataset, batch_size=32, shuffle=True)
|
275 |
+
accuracy, all_preds, all_labels = evaluate_model(model, dataloader)
|
276 |
+
|
277 |
+
# Calculate the number of correct and incorrect predictions
|
278 |
+
correct_preds = sum(np.array(all_preds) == np.array(all_labels))
|
279 |
+
incorrect_preds = len(all_labels) - correct_preds
|
280 |
+
print('-'*10)
|
281 |
+
print(f'Total images: {len(all_labels)}')
|
282 |
+
print(f'Correct predictions: {correct_preds}')
|
283 |
+
print(f'Incorrect predictions: {incorrect_preds}')
|
284 |
+
print(f'Accuracy: {accuracy:.4f}')
|
285 |
+
|
286 |
+
# Function to load and preprocess the image
|
287 |
+
def process_image(image_path):
|
288 |
+
data_transform = transforms.Compose([
|
289 |
+
transforms.Resize((224, 224)),
|
290 |
+
transforms.ToTensor(),
|
291 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
292 |
+
])
|
293 |
+
image = Image.open(image_path).convert('RGB')
|
294 |
+
image = data_transform(image)# data_transforms(image) # <-- data transforms uses all the random cropping as well
|
295 |
+
image = image.unsqueeze(0) # Add batch dimension
|
296 |
+
return image
|
297 |
+
|
298 |
+
#----------------------------INFERENCE PART----------------------------
|
299 |
+
|
300 |
+
# Function to predict the class of a single image
|
301 |
+
def predict_single_image(image_path, model):
|
302 |
+
# Load the image and preprocess it
|
303 |
+
image = process_image(image_path)
|
304 |
+
|
305 |
+
# Load the model
|
306 |
+
model.eval()
|
307 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
308 |
+
model = model.to(device)
|
309 |
+
|
310 |
+
# Pass the image through the model
|
311 |
+
with torch.no_grad():
|
312 |
+
image = image.to(device)
|
313 |
+
outputs = model(image)
|
314 |
+
probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
|
315 |
+
|
316 |
+
# Return the class names and their probabilities as a Pandas Series
|
317 |
+
return pd.Series(probabilities.cpu().numpy(), index=class_names).sort_values(ascending=False)
|
318 |
+
|
319 |
+
def classify(img_path):
|
320 |
+
# Path to the single image
|
321 |
+
image_path = img_path
|
322 |
+
|
323 |
+
# Initialize your custom model
|
324 |
+
model = CustomNet(num_ftrs, num_classes)
|
325 |
+
# Load the trained model weights
|
326 |
+
model.load_state_dict(torch.load('./fine_tuned:plant_classifier.pth'))
|
327 |
+
|
328 |
+
# Predict the class probabilities
|
329 |
+
class_probabilities = predict_single_image(image_path, model)
|
330 |
+
return class_probabilities
|
331 |
+
|
332 |
+
|
333 |
+
#----------------------------INFERENCE PART----------------------------
|
334 |
+
|
335 |
+
|
336 |
+
## script to automatically include larger drone images
|
337 |
+
|
338 |
+
import os
|
339 |
+
import shutil
|
340 |
+
from PIL import Image
|
341 |
+
|
342 |
+
# Define the paths
|
343 |
+
source_dir = 'path/to/source_images' # The directory with new images
|
344 |
+
target_base_dir = 'path/to/training_images' # The base directory containing original class folders
|
345 |
+
new_base_dir = 'path/to/training_images_2' # The base directory for the new substructure
|
346 |
+
|
347 |
+
# Extract the class folders
|
348 |
+
class_folders = [d for d in os.listdir(target_base_dir) if os.path.isdir(os.path.join(target_base_dir, d))]
|
349 |
+
|
350 |
+
# Function to extract ID from a filename
|
351 |
+
def extract_id(filename):
|
352 |
+
return filename.split('_')[0] # Assumes ID is the first part of the filename separated by '_'
|
353 |
+
|
354 |
+
# Function to crop the middle section of an image
|
355 |
+
def crop_middle_section(image):
|
356 |
+
width, height = image.size
|
357 |
+
new_width = width // 3
|
358 |
+
new_height = height // 3
|
359 |
+
left = (width - new_width) // 2
|
360 |
+
top = (height - new_height) // 2
|
361 |
+
right = left + new_width
|
362 |
+
bottom = top + new_height
|
363 |
+
return image.crop((left, top, right, bottom))
|
364 |
+
|
365 |
+
# Create the new base directory if it does not exist
|
366 |
+
os.makedirs(new_base_dir, exist_ok=True)
|
367 |
+
|
368 |
+
# Create a dictionary to map IDs to their respective class folders
|
369 |
+
id_to_class_folder = {}
|
370 |
+
for class_folder in class_folders:
|
371 |
+
class_folder_path = os.path.join(target_base_dir, class_folder)
|
372 |
+
for filename in os.listdir(class_folder_path):
|
373 |
+
if os.path.isfile(os.path.join(class_folder_path, filename)):
|
374 |
+
file_id = extract_id(filename)
|
375 |
+
id_to_class_folder[file_id] = class_folder
|
376 |
+
|
377 |
+
# Copy and manipulate the matching images
|
378 |
+
for filename in os.listdir(source_dir):
|
379 |
+
if os.path.isfile(os.path.join(source_dir, filename)):
|
380 |
+
file_id = extract_id(filename)
|
381 |
+
if file_id in id_to_class_folder:
|
382 |
+
target_class_folder = id_to_class_folder[file_id]
|
383 |
+
new_class_folder_path = os.path.join(new_base_dir, target_class_folder)
|
384 |
+
os.makedirs(new_class_folder_path, exist_ok=True) # Create the class folder if it doesn't exist
|
385 |
+
|
386 |
+
target_path = os.path.join(new_class_folder_path, filename)
|
387 |
+
|
388 |
+
# Open and manipulate the image
|
389 |
+
image_path = os.path.join(source_dir, filename)
|
390 |
+
with Image.open(image_path) as img:
|
391 |
+
cropped_img = crop_middle_section(img)
|
392 |
+
cropped_img.save(target_path)
|
393 |
+
|
394 |
+
print(f'Copied and cropped {filename} to {new_class_folder_path}')
|
395 |
+
|
396 |
+
print('Image processing and copying completed.')
|