binhnase04854's picture
first deploy
b699122
"""Composability graphs."""
import json
from typing import Any, Dict, List, Optional, Sequence, Type, Union, cast
from gpt_index.constants import (
ADDITIONAL_QUERY_CONTEXT_KEY,
DOCSTORE_KEY,
INDEX_STRUCT_KEY,
)
from gpt_index.data_structs.data_structs_v2 import CompositeIndex
from gpt_index.data_structs.data_structs_v2 import V2IndexStruct
from gpt_index.data_structs.data_structs_v2 import V2IndexStruct as IndexStruct
from gpt_index.data_structs.node_v2 import IndexNode, DocumentRelationship
from gpt_index.docstore import DocumentStore
from gpt_index.indices.base import BaseGPTIndex
from gpt_index.indices.composability.utils import (
load_query_context_from_dict,
save_query_context_to_dict,
)
from gpt_index.indices.query.query_runner import QueryRunner
from gpt_index.indices.query.query_transform.base import BaseQueryTransform
from gpt_index.indices.query.schema import QueryBundle, QueryConfig
from gpt_index.indices.service_context import ServiceContext
from gpt_index.response.schema import RESPONSE_TYPE
# TMP: refactor query config type
QUERY_CONFIG_TYPE = Union[Dict, QueryConfig]
class ComposableGraph:
"""Composable graph."""
def __init__(
self,
index_struct: CompositeIndex,
docstore: DocumentStore,
service_context: Optional[ServiceContext] = None,
query_context: Optional[Dict[str, Dict[str, Any]]] = None,
**kwargs: Any,
) -> None:
"""Init params."""
self._docstore = docstore
self._index_struct = index_struct
self._service_context = service_context or ServiceContext.from_defaults()
self._query_context = query_context or {}
@property
def index_struct(self) -> CompositeIndex:
return self._index_struct
@property
def service_context(self) -> ServiceContext:
return self._service_context
@classmethod
def from_index_structs_and_docstores(
cls,
all_index_structs: Dict[str, IndexStruct],
root_id: str,
docstores: Sequence[DocumentStore],
query_context: Optional[Dict[str, Dict[str, Any]]] = None,
service_context: Optional[ServiceContext] = None,
) -> "ComposableGraph":
composite_index_struct = CompositeIndex(
all_index_structs=all_index_structs,
root_id=root_id,
)
merged_docstore = DocumentStore.merge(docstores)
return cls(
index_struct=composite_index_struct,
docstore=merged_docstore,
query_context=query_context,
service_context=service_context,
)
@classmethod
def from_indices(
cls,
root_index_cls: Type[BaseGPTIndex],
children_indices: Sequence[BaseGPTIndex],
index_summaries: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> "ComposableGraph": # type: ignore
"""Create composable graph using this index class as the root."""
if index_summaries is None:
for index in children_indices:
if index.index_struct.summary is None:
raise ValueError(
"Summary must be set for children indices. If the index does "
"a summary (through index.index_struct.summary), then it must "
"be specified with then `index_summaries` "
"argument in this function."
"We will support automatically setting the summary in the "
"future."
)
index_summaries = [index.index_struct.summary for index in children_indices]
else:
# set summaries for each index
for index, summary in zip(children_indices, index_summaries):
index.index_struct.summary = summary
if len(children_indices) != len(index_summaries):
raise ValueError("indices and index_summaries must have same length!")
# construct index nodes
index_nodes = []
for index, summary in zip(children_indices, index_summaries):
assert isinstance(index.index_struct, V2IndexStruct)
index_node = IndexNode(
text=summary,
index_id=index.index_struct.index_id,
relationships={
DocumentRelationship.SOURCE: index.index_struct.index_id
},
)
index_nodes.append(index_node)
# construct root index
root_index = root_index_cls(
nodes=index_nodes,
**kwargs,
)
# type: ignore
all_indices: List[BaseGPTIndex] = cast(List[BaseGPTIndex], children_indices) + [
root_index
]
# collect query context, e.g. vector stores
query_context: Dict[str, Dict[str, Any]] = {}
for index in list(children_indices) + [root_index]:
assert isinstance(index.index_struct, V2IndexStruct)
index_id = index.index_struct.index_id
query_context[index_id] = index.query_context
return cls.from_index_structs_and_docstores(
all_index_structs={
index.index_struct.index_id: index.index_struct for index in all_indices
},
root_id=root_index.index_struct.index_id,
docstores=[index.docstore for index in all_indices],
service_context=root_index.service_context,
query_context=query_context,
)
def query(
self,
query_str: Union[str, QueryBundle],
query_configs: Optional[List[QUERY_CONFIG_TYPE]] = None,
query_transform: Optional[BaseQueryTransform] = None,
service_context: Optional[ServiceContext] = None,
) -> RESPONSE_TYPE:
"""Query the index."""
service_context = service_context or self._service_context
query_runner = QueryRunner(
index_struct=self._index_struct,
service_context=service_context,
query_context=self._query_context,
docstore=self._docstore,
query_configs=query_configs,
query_transform=query_transform,
recursive=True,
)
return query_runner.query(query_str)
async def aquery(
self,
query_str: Union[str, QueryBundle],
query_configs: Optional[List[QUERY_CONFIG_TYPE]] = None,
query_transform: Optional[BaseQueryTransform] = None,
service_context: Optional[ServiceContext] = None,
) -> RESPONSE_TYPE:
"""Query the index."""
service_context = service_context or self._service_context
query_runner = QueryRunner(
index_struct=self._index_struct,
service_context=service_context,
query_context=self._query_context,
docstore=self._docstore,
query_configs=query_configs,
query_transform=query_transform,
recursive=True,
)
return await query_runner.aquery(query_str)
def get_index(
self, index_struct_id: str, index_cls: Type[BaseGPTIndex], **kwargs: Any
) -> BaseGPTIndex:
"""Get index from index struct id."""
index_struct = self._index_struct.all_index_structs[index_struct_id]
return index_cls(
index_struct=index_struct,
docstore=self._docstore,
**kwargs,
)
@classmethod
def load_from_string(cls, index_string: str, **kwargs: Any) -> "ComposableGraph":
"""Load index from string (in JSON-format).
This method loads the index from a JSON string. The index data
structure itself is preserved completely. If the index is defined over
subindices, those subindices will also be preserved (and subindices of
those subindices, etc.).
Args:
save_path (str): The save_path of the file.
Returns:
BaseGPTIndex: The loaded index.
"""
# lazy load registry
from gpt_index.indices.registry import load_index_struct_from_dict
result_dict: Dict[str, Any] = json.loads(index_string)
index_struct = load_index_struct_from_dict(result_dict[INDEX_STRUCT_KEY])
docstore = DocumentStore.load_from_dict(result_dict[DOCSTORE_KEY])
# NOTE: this allows users to pass in kwargs at load time
# e.g. passing in vector store client
query_context_kwargs = kwargs.pop("query_context_kwargs", None)
query_context = load_query_context_from_dict(
result_dict.get(ADDITIONAL_QUERY_CONTEXT_KEY, {}),
query_context_kwargs=query_context_kwargs,
)
assert isinstance(index_struct, CompositeIndex)
return cls(
index_struct=index_struct,
docstore=docstore,
query_context=query_context,
**kwargs,
)
@classmethod
def load_from_disk(cls, save_path: str, **kwargs: Any) -> "ComposableGraph":
"""Load index from disk.
This method loads the index from a JSON file stored on disk. The index data
structure itself is preserved completely. If the index is defined over
subindices, those subindices will also be preserved (and subindices of
those subindices, etc.).
Args:
save_path (str): The save_path of the file.
Returns:
BaseGPTIndex: The loaded index.
"""
with open(save_path, "r") as f:
file_contents = f.read()
return cls.load_from_string(file_contents, **kwargs)
def save_to_string(self, **save_kwargs: Any) -> str:
"""Save to string.
This method stores the index into a JSON file stored on disk.
Args:
save_path (str): The save_path of the file.
"""
out_dict: Dict[str, Any] = {
INDEX_STRUCT_KEY: self._index_struct.to_dict(),
DOCSTORE_KEY: self._docstore.serialize_to_dict(),
ADDITIONAL_QUERY_CONTEXT_KEY: save_query_context_to_dict(
self._query_context
),
}
return json.dumps(out_dict)
def save_to_disk(self, save_path: str, **save_kwargs: Any) -> None:
"""Save to file.
This method stores the index into a JSON file stored on disk.
Args:
save_path (str): The save_path of the file.
"""
index_string = self.save_to_string(**save_kwargs)
with open(save_path, "w") as f:
f.write(index_string)