Spaces:
Runtime error
Runtime error
File size: 10,557 Bytes
b699122 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
"""Composability graphs."""
import json
from typing import Any, Dict, List, Optional, Sequence, Type, Union, cast
from gpt_index.constants import (
ADDITIONAL_QUERY_CONTEXT_KEY,
DOCSTORE_KEY,
INDEX_STRUCT_KEY,
)
from gpt_index.data_structs.data_structs_v2 import CompositeIndex
from gpt_index.data_structs.data_structs_v2 import V2IndexStruct
from gpt_index.data_structs.data_structs_v2 import V2IndexStruct as IndexStruct
from gpt_index.data_structs.node_v2 import IndexNode, DocumentRelationship
from gpt_index.docstore import DocumentStore
from gpt_index.indices.base import BaseGPTIndex
from gpt_index.indices.composability.utils import (
load_query_context_from_dict,
save_query_context_to_dict,
)
from gpt_index.indices.query.query_runner import QueryRunner
from gpt_index.indices.query.query_transform.base import BaseQueryTransform
from gpt_index.indices.query.schema import QueryBundle, QueryConfig
from gpt_index.indices.service_context import ServiceContext
from gpt_index.response.schema import RESPONSE_TYPE
# TMP: refactor query config type
QUERY_CONFIG_TYPE = Union[Dict, QueryConfig]
class ComposableGraph:
"""Composable graph."""
def __init__(
self,
index_struct: CompositeIndex,
docstore: DocumentStore,
service_context: Optional[ServiceContext] = None,
query_context: Optional[Dict[str, Dict[str, Any]]] = None,
**kwargs: Any,
) -> None:
"""Init params."""
self._docstore = docstore
self._index_struct = index_struct
self._service_context = service_context or ServiceContext.from_defaults()
self._query_context = query_context or {}
@property
def index_struct(self) -> CompositeIndex:
return self._index_struct
@property
def service_context(self) -> ServiceContext:
return self._service_context
@classmethod
def from_index_structs_and_docstores(
cls,
all_index_structs: Dict[str, IndexStruct],
root_id: str,
docstores: Sequence[DocumentStore],
query_context: Optional[Dict[str, Dict[str, Any]]] = None,
service_context: Optional[ServiceContext] = None,
) -> "ComposableGraph":
composite_index_struct = CompositeIndex(
all_index_structs=all_index_structs,
root_id=root_id,
)
merged_docstore = DocumentStore.merge(docstores)
return cls(
index_struct=composite_index_struct,
docstore=merged_docstore,
query_context=query_context,
service_context=service_context,
)
@classmethod
def from_indices(
cls,
root_index_cls: Type[BaseGPTIndex],
children_indices: Sequence[BaseGPTIndex],
index_summaries: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> "ComposableGraph": # type: ignore
"""Create composable graph using this index class as the root."""
if index_summaries is None:
for index in children_indices:
if index.index_struct.summary is None:
raise ValueError(
"Summary must be set for children indices. If the index does "
"a summary (through index.index_struct.summary), then it must "
"be specified with then `index_summaries` "
"argument in this function."
"We will support automatically setting the summary in the "
"future."
)
index_summaries = [index.index_struct.summary for index in children_indices]
else:
# set summaries for each index
for index, summary in zip(children_indices, index_summaries):
index.index_struct.summary = summary
if len(children_indices) != len(index_summaries):
raise ValueError("indices and index_summaries must have same length!")
# construct index nodes
index_nodes = []
for index, summary in zip(children_indices, index_summaries):
assert isinstance(index.index_struct, V2IndexStruct)
index_node = IndexNode(
text=summary,
index_id=index.index_struct.index_id,
relationships={
DocumentRelationship.SOURCE: index.index_struct.index_id
},
)
index_nodes.append(index_node)
# construct root index
root_index = root_index_cls(
nodes=index_nodes,
**kwargs,
)
# type: ignore
all_indices: List[BaseGPTIndex] = cast(List[BaseGPTIndex], children_indices) + [
root_index
]
# collect query context, e.g. vector stores
query_context: Dict[str, Dict[str, Any]] = {}
for index in list(children_indices) + [root_index]:
assert isinstance(index.index_struct, V2IndexStruct)
index_id = index.index_struct.index_id
query_context[index_id] = index.query_context
return cls.from_index_structs_and_docstores(
all_index_structs={
index.index_struct.index_id: index.index_struct for index in all_indices
},
root_id=root_index.index_struct.index_id,
docstores=[index.docstore for index in all_indices],
service_context=root_index.service_context,
query_context=query_context,
)
def query(
self,
query_str: Union[str, QueryBundle],
query_configs: Optional[List[QUERY_CONFIG_TYPE]] = None,
query_transform: Optional[BaseQueryTransform] = None,
service_context: Optional[ServiceContext] = None,
) -> RESPONSE_TYPE:
"""Query the index."""
service_context = service_context or self._service_context
query_runner = QueryRunner(
index_struct=self._index_struct,
service_context=service_context,
query_context=self._query_context,
docstore=self._docstore,
query_configs=query_configs,
query_transform=query_transform,
recursive=True,
)
return query_runner.query(query_str)
async def aquery(
self,
query_str: Union[str, QueryBundle],
query_configs: Optional[List[QUERY_CONFIG_TYPE]] = None,
query_transform: Optional[BaseQueryTransform] = None,
service_context: Optional[ServiceContext] = None,
) -> RESPONSE_TYPE:
"""Query the index."""
service_context = service_context or self._service_context
query_runner = QueryRunner(
index_struct=self._index_struct,
service_context=service_context,
query_context=self._query_context,
docstore=self._docstore,
query_configs=query_configs,
query_transform=query_transform,
recursive=True,
)
return await query_runner.aquery(query_str)
def get_index(
self, index_struct_id: str, index_cls: Type[BaseGPTIndex], **kwargs: Any
) -> BaseGPTIndex:
"""Get index from index struct id."""
index_struct = self._index_struct.all_index_structs[index_struct_id]
return index_cls(
index_struct=index_struct,
docstore=self._docstore,
**kwargs,
)
@classmethod
def load_from_string(cls, index_string: str, **kwargs: Any) -> "ComposableGraph":
"""Load index from string (in JSON-format).
This method loads the index from a JSON string. The index data
structure itself is preserved completely. If the index is defined over
subindices, those subindices will also be preserved (and subindices of
those subindices, etc.).
Args:
save_path (str): The save_path of the file.
Returns:
BaseGPTIndex: The loaded index.
"""
# lazy load registry
from gpt_index.indices.registry import load_index_struct_from_dict
result_dict: Dict[str, Any] = json.loads(index_string)
index_struct = load_index_struct_from_dict(result_dict[INDEX_STRUCT_KEY])
docstore = DocumentStore.load_from_dict(result_dict[DOCSTORE_KEY])
# NOTE: this allows users to pass in kwargs at load time
# e.g. passing in vector store client
query_context_kwargs = kwargs.pop("query_context_kwargs", None)
query_context = load_query_context_from_dict(
result_dict.get(ADDITIONAL_QUERY_CONTEXT_KEY, {}),
query_context_kwargs=query_context_kwargs,
)
assert isinstance(index_struct, CompositeIndex)
return cls(
index_struct=index_struct,
docstore=docstore,
query_context=query_context,
**kwargs,
)
@classmethod
def load_from_disk(cls, save_path: str, **kwargs: Any) -> "ComposableGraph":
"""Load index from disk.
This method loads the index from a JSON file stored on disk. The index data
structure itself is preserved completely. If the index is defined over
subindices, those subindices will also be preserved (and subindices of
those subindices, etc.).
Args:
save_path (str): The save_path of the file.
Returns:
BaseGPTIndex: The loaded index.
"""
with open(save_path, "r") as f:
file_contents = f.read()
return cls.load_from_string(file_contents, **kwargs)
def save_to_string(self, **save_kwargs: Any) -> str:
"""Save to string.
This method stores the index into a JSON file stored on disk.
Args:
save_path (str): The save_path of the file.
"""
out_dict: Dict[str, Any] = {
INDEX_STRUCT_KEY: self._index_struct.to_dict(),
DOCSTORE_KEY: self._docstore.serialize_to_dict(),
ADDITIONAL_QUERY_CONTEXT_KEY: save_query_context_to_dict(
self._query_context
),
}
return json.dumps(out_dict)
def save_to_disk(self, save_path: str, **save_kwargs: Any) -> None:
"""Save to file.
This method stores the index into a JSON file stored on disk.
Args:
save_path (str): The save_path of the file.
"""
index_string = self.save_to_string(**save_kwargs)
with open(save_path, "w") as f:
f.write(index_string)
|